### 2020 "State of the Streets" Final Report

Prepared for:

# Village of Merrionette Park, Illinois & *Chicago Metropolitan Agency for Planning*

Prepared by:

#### Gorrondona and Associates, Inc.

**Pavement Engineering Division** 

4201 West Parmer Lane, Building A, Suite 150 | Austin, Texas 78727 (512) 719-9933 | <u>www.ga-inc.net</u>

In association with:

#### Urban GIS, Inc. (MBE/DBE/8a)

171 North Aberdeen | Suite 10 | Chicago, Illinois 60607 (312) 525-8400 | <u>www.urbangis.com</u>

#### TABLE OF CONTENTS

| A |     | ms                                                              |    |
|---|-----|-----------------------------------------------------------------|----|
| 1 | Ex  | ecutive Summary                                                 | 4  |
|   | 1.1 | History                                                         | 4  |
|   | 1.2 | PAVER Pavement Management System                                | 4  |
|   | 1.3 | Purpose and scope                                               |    |
|   | 1.4 | Results                                                         |    |
|   | 1.5 | Recommendations                                                 | 7  |
| 2 | Int | roduction                                                       |    |
|   | 2.1 | Foreword                                                        |    |
|   | 2.2 | Background, scope, and objectives                               |    |
|   | 2.3 | Project tasks                                                   |    |
|   | 2.4 | Conceptual overview of pavement management                      |    |
|   | 2.5 | Benefits and costs of implementing a pavement management system |    |
|   | 2.6 | Incorporating pavement preservation strategies                  |    |
|   | 2.7 | Summary                                                         |    |
| 3 | Pa  | vement Management System Implementation                         |    |
|   | 3.1 | Foreword                                                        |    |
|   | 3.2 | Objective                                                       |    |
|   | 3.3 | PAVER Pavement Management System overview                       |    |
|   | 3.3 |                                                                 |    |
|   | 3.3 | 1                                                               |    |
|   | 3.3 |                                                                 |    |
|   | 3.3 |                                                                 |    |
|   | 3.3 | 1 0                                                             |    |
|   | 3.3 | 1 0                                                             |    |
|   | 3.4 | Summary                                                         |    |
| 4 |     | vement Inventory                                                |    |
|   | 4.1 | Foreword                                                        |    |
|   | 4.2 | Objective                                                       |    |
|   | 4.3 | PAVER inventory development                                     |    |
|   | 4.4 | Inventory summary                                               |    |
| 5 |     | vement Condition Inspection                                     |    |
|   | 5.1 | Foreword                                                        |    |
|   | 5.2 | Objective                                                       |    |
|   | 5.3 | Pavement condition data acquisition                             | 20 |
|   | 5.4 | Pavement Condition Index (PCI) method                           |    |
|   | 5.5 | Pavement Condition Index (PCI) data interpretation              |    |
|   | 5.6 | Existing pavement conditions and field observations             |    |
|   | 5.7 | Example pavement conditions through the Village                 |    |
|   | 5.8 | Summary                                                         |    |
| 6 |     | aintenance and Rehabilitation Funding Analyses                  |    |
|   | 6.1 | Foreword                                                        |    |
|   | 6.2 | Objective                                                       |    |
|   | 6.3 | Assumptions                                                     |    |
| _ | 6.4 | Results                                                         |    |
| 7 |     | mmary and Recommendations                                       |    |
|   | 7.1 | Summary                                                         |    |
|   | 7.2 | Recommendations                                                 | 34 |

| 7.2.1 | Implement pavement preservation techniques                              | 34 |
|-------|-------------------------------------------------------------------------|----|
| 7.2.2 | Determine when pavements should be reconstructed rather than resurfaced |    |
| 7.2.3 | Perform regular pavement condition inspections – every three years      |    |
| 7.2.4 | Routinely update PAVER                                                  |    |
| 7.2.5 | Increase funding for pavement M&R                                       |    |
| 7.2.6 | Prioritize existing M&R funding to maximize shared benefit              |    |

#### Appendix A – Pavement, Inventory, Condition and Recommended M&R Maps

| Appendix B – Tabu | lated Ten-Year Major M&l | R Recommendations ar | nd Estimated Costs - |
|-------------------|--------------------------|----------------------|----------------------|
| Assu              | uming Unlimited Funding  |                      |                      |

- Appendix C Pavement Maintenance Policies and Unit Costs
- Appendix D Tabulated Preventive Maintenance Recommendations
- Appendix E Pavement Inventory and Condition Tabular Data

#### ACRONYMS

| Acronym | Definition                                                    |
|---------|---------------------------------------------------------------|
| AC      | Asphalt concrete pavement                                     |
| APC     | Asphalt concrete overlay on Portland cement concrete pavement |
| ASTM    | American Society for Testing and Materials                    |
| BR      | Brick pavement                                                |
| CIP     | Capital Improvement Plan                                      |
| CMAP    | Chicago Metropolitan Agency for Planning                      |
| CSU     | Colorado State University                                     |
| FT      | Foot                                                          |
| G&AI    | Gorrondona and Associates, Inc.                               |
| GIS     | Geographic information system                                 |
| GR      | Gravel pavement                                               |
| IRI     | International Roughness Index                                 |
| K       | Thousand                                                      |
| L&T     | Longitudinal and transverse cracking                          |
| LCD     | Last construction date                                        |
| М       | Million                                                       |
| M&R     | Maintenance and rehabilitation                                |
| Р       | Primary rank pavement                                         |
| PAVER   | PAVER Pavement Management System                              |
| PCC     | Portland cement concrete pavement                             |
| PCI     | Pavement Condition Index                                      |
| PMP     | Pavement management program                                   |
| PMS     | Pavement management system                                    |
| S       | Secondary rank pavement section                               |
| SF      | Square feet                                                   |
| SU      | Sample unit                                                   |
| SY      | Square yard                                                   |
| Т       | Tertiary rank pavement section                                |

#### 1 EXECUTIVE SUMMARY

#### 1.1 History

In October of 2020, the Chicago Metropolitan Agency for Planning (CMAP) retained the services of Gorrondona and Associates, Inc. (G&AI) to implement a pavement management system for the Village of Merrionette Park that will enable the Village to manage its roadway network in a more proactive, cost-effective, and sustainable way. To accomplish this objective, G&AI: 1) assessed the condition of the Village's roadways, 2) implemented and customized a pavement management system for the Village, and 3) developed near- and long-term pavement maintenance and rehabilitation (M&R) recommendations for the Village's roadways.

During the fall of 2019 and the spring of 2020, G&AI's state-of-the-art PathRunner pavement condition data collection system (shown in Figure 1) was deployed to capture continuous, high-resolution pavement cracking, rutting, and roughness data of the Village's roads. Collected data were entered into the PAVER Pavement Management System (PAVER), and baseline pavement condition scores were determined for each roadway.

In July of 2020, preliminary results of the condition survey were presented to the Village. G&AI has since worked with the Village to collect additional pavement M&R




Figure 1. PathRunner pavement condition data collection system.

records and M&R unit cost data with which to calibrate PAVER so that it is specific to the Village.

The collected pavement condition data along with both the historical M&R data and unit prices provided by the Village were used to develop network-level M&R recommendations presented herein for the Village's consideration.

#### 1.2 PAVER Pavement Management System

PAVER stores two primary "measures" of pavement condition. The most obvious measure of pavement condition is the **International Roughness Index (IRI)**, which describes the rideability (i.e., smoothness) of the roadway as experienced by the driver.

The second measure of pavement condition is the **Pavement Condition Index (PCI)**, which provides an indication of both the structural integrity and surface operational condition of the roadway. PAVER uses PCI values to determine the most cost-effective level of M&R likely needed. PAVER prioritizes funding for life-extending, lower-cost preventive maintenance activities (e.g., crack sealing, slurry seals, and localized patching) above more costly funding of last resort major M&R activities, such as resurfacing and reconstruction. This prioritization in the PAVER algorithm seeks a proactive and cost-effective approach to pavement management with the avoidance of – unless necessary – more costly reactive practices.

In addition to routinely collected IRI and PCI data, PAVER stores pavement inventory information, historical M&R records, and M&R unit cost data. The system uses this information to predict future

pavement conditions and identify network-level deterioration trends and M&R needs over time. It will also allow the Village to evaluate if present M&R methods are performing as expected.

#### **1.3 Purpose and scope**

The purpose of this project is to implement a comprehensive pavement management system for the Village's roadways. The scope of this project includes all roadways managed by the Village, which total approximately 3.9 centerline miles. This pavement management system will serve as a primary tool to assist the Village in more efficiently allocating its pavement M&R funding.

To this end, G&AI:

- 1. Developed an inventory of the Village's roadways in PAVER. The PAVER inventory contains pavement surface type, functional classification, M&R unit costs, and historical M&R data. *Note: Inventory development is a one-time effort that can be used by the Village if PAVER is retained, only requiring updates to address changes to the Village's roadway network and changes in M&R unit costs.*
- 2. Performed a pavement condition survey of the Village's roadways. This survey was used to determine PCI and IRI values for analysis purposes and will serve as an initial baseline of roadway conditions.
- 3. Used the condition survey with the developed PAVER inventory to determine the impact of different funding levels on the Village's roadways and identify potential network-level pavement M&R needs.

#### 1.4 Results

**Pavement Condition Index (PCI)** and **International Roughness Index (IRI)** values were determined for each roadway. PCI values provide an indication of both the structural integrity and surface operational condition of a pavement. PCI values range from 0 (a failed pavement) to 100 (a pavement in excellent condition). Table 1 shows the categories chosen to represent the Village's PCI assessment criteria, which includes typical pavement distresses and levels of M&R needed within each category.

| Category     | Typical Distresses and Typical Level of M&R Needed                                                                                                                                                                                                                                                                      | PCI<br>Range |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Good         | Longitudinal and transverse cracking and weathering of surface<br><b>Preventive maintenance:</b> <i>Crack sealing and surface treatments</i>                                                                                                                                                                            | 86-100       |
| Satisfactory | More extensive longitudinal and transverse cracking and weathering of surface<br><b>Preventive maintenance:</b> <i>Crack sealing and surface treatments</i>                                                                                                                                                             | 71-85        |
| Fair         | <ul> <li>Extensive longitudinal and transverse cracking, early stage alligator (fatigue) cracking, early stage rutting, and weathering of surface</li> <li>Global preventive maintenance and localized repairs:</li> <li>Localized surface and/or full-depth patching, surface treatments, and thin overlays</li> </ul> | 56-70        |
| Poor         | More extensive and severe longitudinal and transverse cracking, alligator (fatigue)<br>cracking, rutting, and weathering of surface<br><b>Major rehabilitation:</b> <i>Localized full-depth patching,</i><br><i>mill and overlays, and traditional overlays</i>                                                         | 41-55        |
| Very Poor    | More extensive and more severe longitudinal and transverse cracking, alligator (fatigue) cracking, rutting, weathering of surface, potholes Major rehabilitation: Full-depth patching, mill and overlays, traditional overlays, and reconstruction                                                                      | 26-40        |
| Serious      | Extensive and severe failure of pavement surface<br>Major rehabilitation: <i>Reconstruction</i>                                                                                                                                                                                                                         | 11-25        |
| Failed       | Complete failure of pavement surface Major rehabilitation: Reconstruction                                                                                                                                                                                                                                               | 0-10         |

#### Table 1. Village's pavement condition categories.

At the time of G&AI's inspection, the Village's pavements were found to have an average PCI of 44, indicating that the Village's roadways are in overall "poor" condition.

IRI values measure the roughness (vertical displacement over a fixed interval reported in inches per mile) of a roadway pavement:

- IRI values less than 200 inches/mile indicate "smooth" pavement.
- IRI values between 200 and 400 inches/mile indicate a "marginally rough" pavement.
- IRI values greater than 400 inches/mile indicate "rough" pavement.

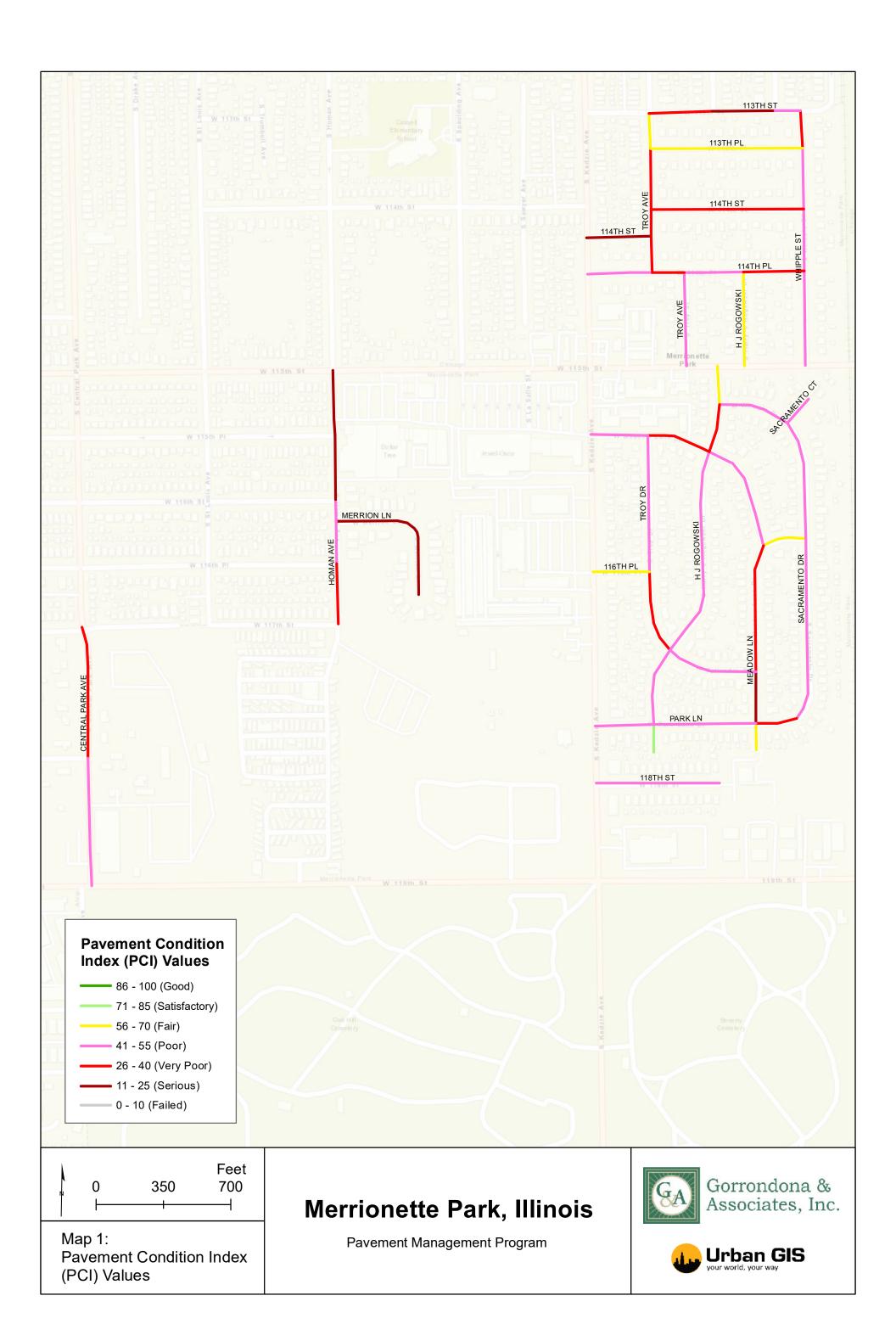
The Village's roadways were found to have an average IRI value of 336 inches/mile, which indicates overall "marginally rough" pavement.

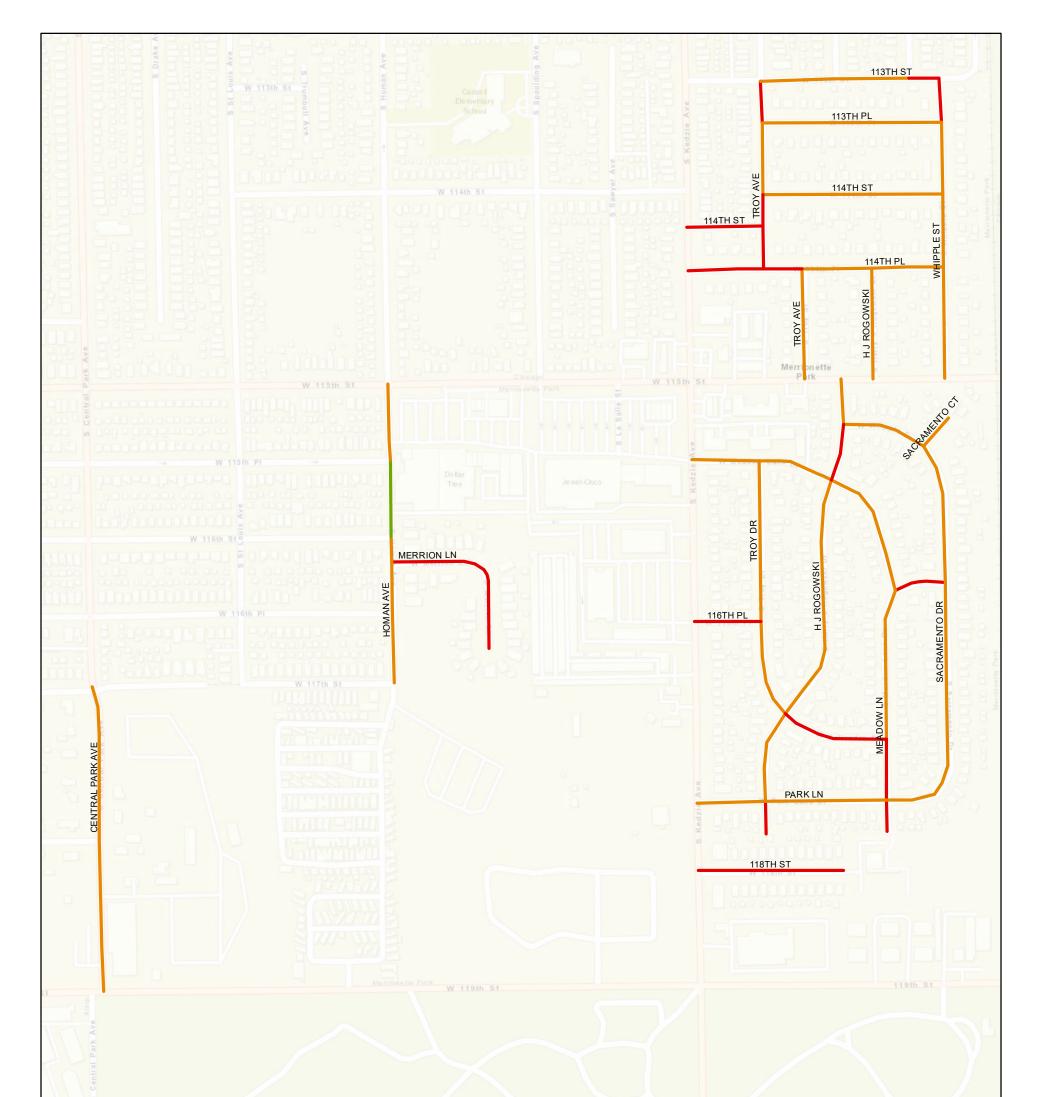
Following this executive summary, Map 1 shows PCI categories for each roadway. Roadways that were planned for resurfacing or reconstruction in 2020 (i.e., after the field inspection was performed) were assigned an assumed PCI value of 100. All other PCI values shown on Map 1 reflect the conditions of the

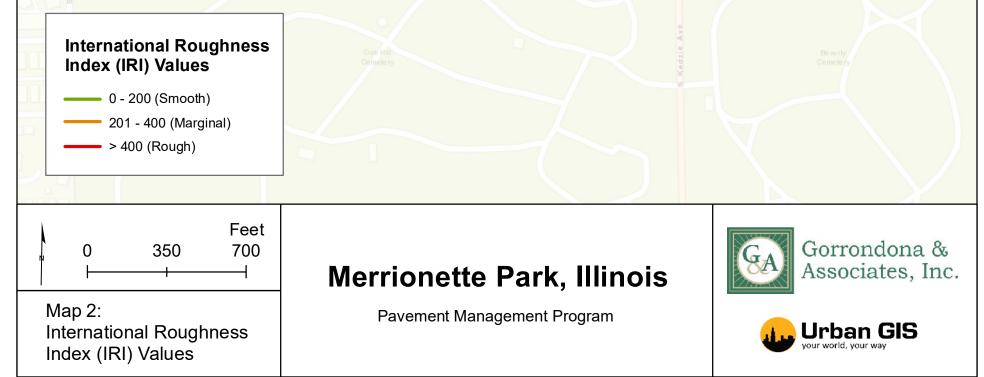
roadways at the time of the field inspection. Map 2 shows IRI categories for each roadway at the time of inspection. IRI values reflect a physical measurement of roughness. Consequently, IRI values were not adjusted for roadways that were planned for resurfacing or reconstruction in 2020.

The causes of pavement deterioration as quantified by the PCI may be divided into three general categories:

- Vehicle load related.
- Climate/durability related.
- Other (construction defects and material issues).


The deterioration observed on the Village's pavements at the time of inspection was caused by a mixture of vehicle load- and climate-related distresses. Vehicle load-related distresses, including alligator cracking and rutting, were pronounced on many of the Village's roadways and contributed most to lower PCI values. Significant climate-related distresses, including block cracking and weathering, were also observed on the Village's roadways.


#### **1.5 Recommendations**


For the Village to get the most return on their investment from PAVER, the system must be considered a living entity. The Village should:

- 1. Implement preservation techniques to cost-effectively extend the life of its roadways.
- 2. Determine when resurfacing is no longer a cost-effective option and reconstruction is needed.
- 3. Annually update M&R activities performed on Village roadways in the PAVER database.
- 4. Annually update M&R unit costs (or whenever economic conditions cause changes in unit prices).
- 5. Commit future funding to the routine collection of pavement condition data (all roadways should be inspected on a two- to three-year cycle).
- 6. Use collected pavement condition data to assess the performance of the roadways and applied M&R activities.

With such attention, PAVER will become a repository of accurate, up-to-date data and the primary tool that the Village uses for more cost-effectively programming M&R funding.







#### 2 INTRODUCTION

#### 2.1 Foreword

This section of the report expands on the Executive Summary and provides the reader with information pertaining to the creation and implementation of this pavement management system for the Village.

At the core of a modern pavement management system is a geocentric database that contains pavement inventory and condition information. Combined with up-to-date M&R unit cost data, calibrated deterioration models, and owner-specific M&R practices, this information is used by analysis tools in the pavement management system to predict future pavement conditions, develop multi-year M&R plans, and forecast anticipated funding needs.

This section provides a conceptual overview of pavement management and follows with the benefits and costs of implementing a pavement management system. Implementation of the Village's pavement management system is detailed in Sections 3, 4 and 5. This section closes with an overview of effective preventive maintenance strategies that should be considered by the Village.

#### 2.2 Background, scope, and objectives

The Chicago Metropolitan Agency for Planning (CMAP) retained the services of Gorrondona and Associates, Inc. (G&AI) to assess the existing condition of the roadways maintained by the Village. The primary objectives of this project are to implement a comprehensive and Village-wide pavement management system, perform a network-level pavement condition survey, and identify future pavement M&R needs.

The project will provide the Village with a better understanding of the current condition of its roadways and network-level recommendations for future M&R based on the results of the pavement condition survey. Moving forward, the pavement management system will continue to serve as a repository for pavement condition data, historical M&R records, and pavement condition deterioration trends.

PAVER was implemented for the Village, and a state-of-the-art PathRunner pavement condition data collection system was deployed to capture continuous, high-resolution pavement cracking, rutting, and roughness data of the Village's roadways.

G&AI has since developed the PAVER inventory database and worked with the Village to collect additional pavement M&R records and M&R unit cost data with which to calibrate the PAVER database so that it is Village specific. These M&R records and M&R unit costs, along with the collected pavement condition data, have been used to identify present network-level M&R needs.

#### 2.3 Project tasks

To successfully accomplish the objectives of this project, G&AI performed the following tasks, which are covered in greater detail in Sections 3, 4, and 5 of this report, respectively:

- 1. Pavement management system implementation
  - *G&AI* developed an inventory of the Village's roadway pavements and implemented *PAVER*.
- 2. Pavement condition survey

*G&AI performed a network-level pavement condition survey on the roadway pavements using a state-of-the-art pavement imaging and profiling data collection system. The pavement condition survey was performed in the fall of 2019 and spring of 2020.* 

3. M&R analyses

*G&AI reviewed the collected condition data and determined the impact of several funding scenarios on the Village's roadways and identified potential pavement M&R needs using PAVER.* 

The 3D pavement imaging and profiling technology used to assess the condition of the Village's roadway pavements is the most comprehensive available. This technology has evolved rapidly over the past several years, and it is now used across the United States by more than half of the state DOTs. Unlike the inherently subjective windshield pavement condition surveys of years past, high resolution cracking, rutting, and roughness condition data were captured continuously for each of the Village's roadways surveyed.

The collected data were then analyzed using a hybrid methodology that incorporates both automated crack detection and classification along with manual quality control. This approach yields a complete set of pavement condition data that may be used for both network-level (high-level budgeting) multi-year M&R planning as well as project-level (estimating M&R quantities) analyses. The collected data were then entered into and analyzed using PAVER. Continuously developed by the US Army Corps of Engineers, PAVER is a sophisticated, non-proprietary system widely used by municipal agencies across the United States and around the world.

#### 2.4 Conceptual overview of pavement management

The use of a pavement management system is intended to provide municipal agencies with a systematic process for cost-effectively managing their pavement network, which may include roadways, parking lots, and alleys. The American Public Works Association (APWA) defines pavement management in the following way:

Pavement management is a systematic method for routinely collecting, storing, and retrieving the kind of decision-making information needed to make maximum use of limited maintenance (and construction) dollars.

Combined with local knowledge and practical judgment, the recommendations from a pavement management system may be used to help make better pavement M&R decisions.

At the core of a pavement management system is the method for assessing pavement condition. The most widely used method for assessing pavement condition is the Pavement Condition Index (PCI), which is industry standard practice and defined in ASTM D6433. The PCI method outlines a process for more objectively assessing the condition of a pavement based on visual observations and measurements that take place during a field inspection. These observations and measurements are then distilled into a PCI

value that ranges between 0 and 100. A PCI value of 0 indicates a failed pavement, and a PCI value of 100 indicates a pavement in good condition.

PCI values help determine the level of M&R needed to cost-effectively maintain or rehabilitate the pavement. These values may also be used to prioritize roadway improvements for the purpose of developing strategic capital improvements programs. When a pavement is in good condition, preventive maintenance can be applied to extend the life of the pavement. However, once a pavement falls below critical condition, preventive maintenance may no longer be cost effective, and more significant and perhaps more costly rehabilitation strategies should be considered.

The "Critical PCI" value for a pavement is the PCI value below which cost-effective preventive maintenance is no longer a viable option, and more significant rehabilitation and sometimes reconstruction may be necessary. As shown in Figure 2, the primary objective of pavement management is to preserve pavements in good condition above the Critical PCI with less costly preventive M&R rather than allow them to deteriorate below the Critical PCI, resulting in the need for more costly major M&R (rehabilitation or reconstruction).

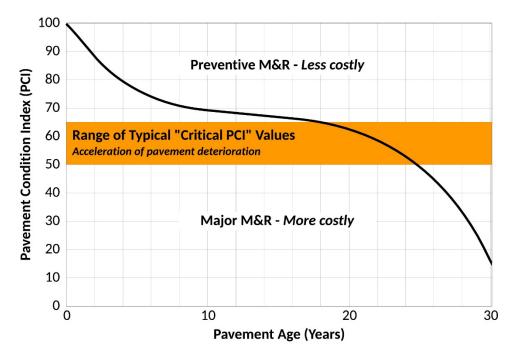



Figure 2. Example of the correct timing of preventive and major M&R relative to the Critical PCI.

The Critical PCI value is determined based on the repeated measurement of pavement condition over time as well as agency-specific M&R policies. Critical PCI values typically range between 50 and 65 (as shown in Figure 2) because the acceleration of pavement deterioration, and subsequent need for more costly M&R, typically occurs then. Setting a higher Critical PCI value simply results in pavements being recommended for major M&R earlier. Some agencies set higher Critical PCI values for their arterial roadways than for their local roadways to ensure that the roadways most heavily traveled (and often at higher speeds) are maintained to a higher standard.

PAVER's default Critical PCI value of 55 has been used for the Village's roadways. The Village may change this value as more condition data and historical M&R data are captured and the deterioration rates

of the Village's roadways are better understood. Typically, two to three PCI inspections are needed to converge on acceptable Critical PCI values. The Village may choose to set Critical PCI values for each functional classification of roadway based on desired policy goals.

When the appropriate preventive maintenance treatments (e.g., crack sealing, seal coats, and patching) are undertaken at the correct times during a pavement's service life, these relatively inexpensive preventive M&R treatments can extend the service life of the pavement, as shown in Figure 3.

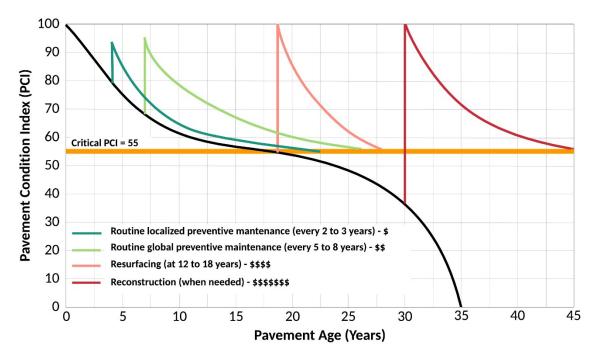



Figure 3. Example of the increasing prices and decreasing benefits of M&R.

It is important to note that the IRI, which provides a useful measure of pavement smoothness, does not correlate well to the level of M&R needed to correct smoothness issues. Consequently, IRI values are not considered when forecasting future M&R needs. Instead, IRI values are used in pavement management systems to identify pavements requiring a special inspection, or they may be used in conjunction with PCI values when prioritizing M&R projects.

As pavement management concepts have gained traction, computer-based pavement management systems have been developed to assist agencies in more optimally managing their pavements. Pavement management systems currently rely on a detailed pavement inventory, routine pavement condition assessments, pavement performance modeling, and sophisticated analysis tools that can forecast future pavement condition and estimate future M&R needs and costs.

#### 2.5 Benefits and costs of implementing a pavement management system

Pavement management systems provide:

- A centralized location for storing pavement condition and inventory data, including construction, maintenance, and rehabilitation records.
- Decision-making support tools for:
  - ✓ Evaluating maintenance and rehabilitation alternatives.
  - ✓ Analyzing the consequences of alternative funding levels on pavement conditions.

- ✓ Improved scheduling and coordination of pavement M&R projects and other infrastructure projects.
- Analysis tools for evaluating the effectiveness of historical methods of rehabilitation.
- Reporting tools for distilling complex data and justifying funding needs to elected officials.

The benefits of implementing and maintaining a pavement management system improve over time as more data are entered into the system. The costs associated with maintaining a pavement management system include:

- Pavement inventory data collection and routine updates (typically performed annually following the end of the paving season).
- Routine pavement condition data collection (arterials and collectors are typically surveyed every other year and local roadways are surveyed on a three-year cycle).
- Evaluating pavement performance and developing M&R plans (typically performed annually following the end of the paving season or following a condition survey to determine candidate roadways for the next paving season).
- Software acquisition, installation, system maintenance, and updates.
- Staff training, as needed.

To ensure the success of a pavement management system, agencies should develop a plan for staffing, maintaining, and funding the system appropriately.

#### 2.6 Incorporating pavement preservation strategies

The implementation of a pavement management system has the added benefit of assisting agencies in determining which pavements may be candidates for preventive maintenance. The use of preventive maintenance early in the life of a pavement, before any significant deterioration, has been demonstrated to be a cost-effective way to extend a pavement's service life.

In the Federal Highway Administration (FHWA) publication, <u>Pavement Preservation</u>, <u>A Road Map to the</u> <u>Future</u>, preventive maintenance is defined as:

"...the planned strategy of cost-effective treatments to an existing roadway system and its appurtenances that preserves the system, retards future deterioration, and maintains or improves the functional condition of the system (without significantly increasing the structural capacity)."

The FHWA adds that preventive maintenance:

"...is typically applied to pavements in good condition having significant remaining service life. As a major component of pavement preservation, preventive maintenance is a strategy of extending the service life by applying cost-effective treatments to the surface or near-surface of structurally sound pavements."

The following preventive maintenance treatments have been demonstrated to be effective when applied at the right time during a pavement's service life:

- Crack sealing, crack filling, and joint sealing of flexible and rigid pavements
- Patching and edge repairs
- Chip seals, fog seals, and slurry seals
- Micro-surfacing
- Thin "functional" and "maintenance" overlay projects

Too frequently these activities are incorrectly applied as "stop-gap" or "cosmetic" treatments for pavements in poor condition rather than as true preservation activities. Preventive maintenance strategies should be applied to pavements that are in relatively good condition, and the activities should be planned and applied systematically following either the resurfacing or reconstruction of a pavement. The following FHWA website provides additional information for pavement preservation: <a href="https://www.fhwa.dot.gov/pavement/preservation/">https://www.fhwa.dot.gov/pavement/preservation/</a>.

#### 2.7 Summary

This section provided the reader with background information pertaining to the creation and implementation of the non-proprietary PAVER system for the Village. The section provided a conceptual overview of pavement management and discussed:

- 1. The benefits the Village will see from the implementation of the pavement management system.
- 2. The costs expected to be incurred with the maintenance of the system.
- 3. The additional functionality beyond the obvious support the system can provide by objectively assisting the Village in optimizing the allocation of its M&R funding.

Implementation of the Village's pavement management system is detailed in Sections 3, 4, and 5. This section closed with an overview of effective preventive maintenance strategies that should be considered by the Village moving forward.

#### **3 PAVEMENT MANAGEMENT SYSTEM IMPLEMENTATION**

#### 3.1 Foreword

This section discusses the first task of this project: Implementing a pavement management system. One of the CMAP's primary desires was to have a non-proprietary pavement management system for participating agencies. This section provides an overview of PAVER, a brief description of the modules available to the Village in PAVER, and insight into the PAVER database development. (Note: The information presented in the section may be supplemented by the PAVER User Manual, which is available as a navigable PDF file in the PAVER software.)



#### 3.2 Objective

The objective of this task was to implement a pavement management system for the Village's roadway pavements. G&AI implemented PAVER, which is developed and continually updated by the US Army Corps of Engineers. This task required developing an inventory of the Village's roadway pavements and collecting current pavement condition data and entering it in PAVER.

#### 3.3 PAVER Pavement Management System overview

PAVER assists agencies in determining when, where, and what level of pavement M&R is required and approximately how much it will cost. The system provides a suite of pavement management tools, or "modules", that will help the Village with the following tasks:

- Developing and organizing their pavement inventory.
- Assessing the current condition of their pavements.
- Developing models to predict future pavement conditions.
- Reporting on past and future pavement performance.
- Developing scenarios for M&R based on either funding or pavement condition goals.
- Planning M&R projects.

PAVER modules include:

- Inventory
- M&R history
- Inspection
- Prediction modeling
- Condition analysis
- M&R planning
- Project planning
- Reporting

A brief description of these modules is presented in the following sub-sections.

Note: Upon request by the municipality, a one-year PAVER license shall be purchased by CMAP for the municipality from Colorado State University (CSU). The PAVER license does not expire. However, after the first year, the municipality will be responsible for purchasing software updates and technical support, if desired. Current pricing for PAVER may be found at: www.paver.colostate.edu.

## 3.3.1 Inventory and maintenance and rehabilitation (M&R) history modules

The PAVER **Inventory** and **M&R History** modules, shown in Figure 4 and Figure 5, are based on a hierarchical structure composed of networks (groups of roadways managed with one source of funding), branches (specific

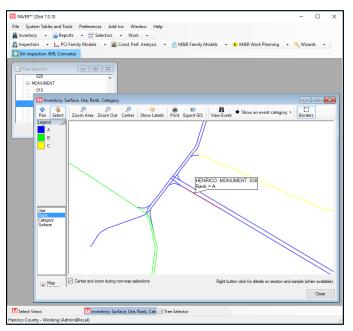



Figure 4. Example roadway functional classifications (ranks) stored in the Inventory module.

roadways), and sections. Sections are the smallest area for which conditions are reported and M&R activities recommended. Sections typically conform to existing GIS segmentation and are commonly defined from intersection to intersection by default.

One network is defined for the Village and each roadway is a branch. Pavement sections are defined within each branch following the Village's existing GIS segmentation in the Illinois Roadway Information System (IRIS). This structure allows the Village to easily organize their inventory and

historical M&R data and provides a simple and efficient way for rolling-up data to higher levels of the pavement hierarchy. The Village provided G&AI with historical M&R records, and this information was entered in PAVER.

#### 3.3.2 Inspection module

PAVER uses the PCI as the primary measure of pavement condition. The **Inspection** module, shown in Figure 6, enables agencies to store raw pavement condition survey data and then calculate PCI values. IRI values are also stored in the **Inspection** module.

#### 3.3.3 Prediction modeling module

The **Prediction Modeling** module in PAVER enables the user to group pavements of similar construction that are subjected to similar traffic, weather, and any other factors affecting pavement performance into "families." Historical pavement condition

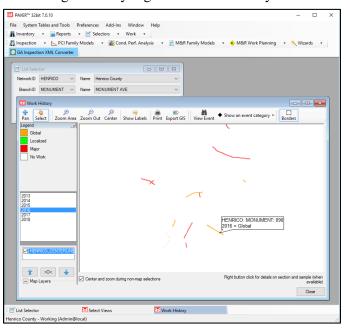



Figure 5. Example historical M&R records stored in the M&R History module.

data are used to build models that can be used to predict future pavement performance. The **Prediction Modeling** module is a hands-on module and prediction models should be updated by the Village following each condition survey. If historical pavement condition data are not available, PAVER provides default pavement prediction curves (shown in Figure 7) and allows the user to develop site specific prediction models.

#### 3.3.4 Condition analysis module

The Condition Analysis module allows the Village to view the condition of the entire pavement network or any subset of the network over time. The module reports past conditions based on interpolated values between historical condition data, and it reports projected conditions based on the application of prediction models developed using the **Prediction Modeling** module.

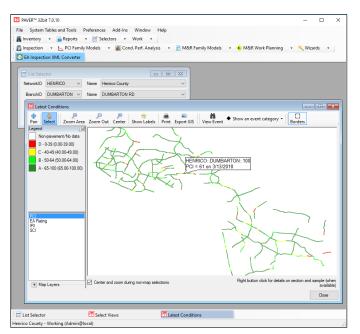



Figure 6. Example PCI values in the Inspection module.

#### 3.3.5 M&R planning module

The **M&R Planning** module can determine the consequence of a predetermined funding level on pavement conditions and estimate the resulting backlog of major work. This information assists in determining funding requirements to meet specific Village pavement condition goals. These capabilities will enable the Village to develop more optimal M&R programs based on available resources and to justify M&R needs.

#### 3.3.6 Reporting module

Each previously described module of PAVER can generate various reports that will assist the Village in analyzing, interpreting, and presenting pavement data. In addition to module-specific reports, PAVER also comes equipped with several "canned" reports, which include:

- GIS reports Internal/external reporting of inventory and condition data
- Summary Charts Simple graphs and data tables of inventory and inspection data
- Inspection Reports Summary of collected pavement condition data
- Work History *Summary of historical maintenance, repair, and rehabilitation data*
- Branch Listing Summary of overall pavement inventory data

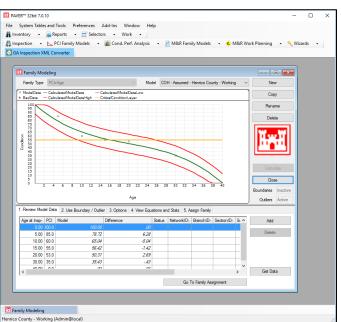



Figure 7. Example deterioration trend developed using the Prediction Modeling module.

- Branch Condition Summary of overall pavement condition data
- Section Condition *Summary of individual section data*

PAVER can generate on-the-fly "user-defined" reports, which can be tailored to meet the Village's specific reporting needs. PAVER's user-defined reporting capability enables the user to extract any data stored in the system and export it to a GIS shapefile, spreadsheet, or text file.

#### 3.4 Summary

This section discussed the first task of this project: Implementing a pavement management system. This section provided an overview of the non-proprietary PAVER system, a brief description of the modules available to the Village in PAVER, and insight into the PAVER database development. The Village's PAVER database has been developed to include specific and relevant data pertaining to the Village's roadway pavement network. PAVER's suite of analysis and planning tools will enable the Village to more effectively manage its roadway pavement network.

#### 4 PAVEMENT INVENTORY

#### 4.1 Foreword

This section describes the Village's roadway pavement inventory as it exists in PAVER. The data sources used in developing the inventory are discussed in this section, and summary data are presented.

#### 4.2 Objective

The objective of this task was to develop a comprehensive inventory of the Village's roadway pavements for inclusion in PAVER. The roadway pavement inventory provides the underlying data on which analysis and reporting is performed with PAVER. In addition, the inventory provides the framework in which all routinely collected pavement condition data and historical work data are stored.

Moving forward, the Village should update the pavement inventory in PAVER to reflect the addition, realignment, widening, and/or removal of roadways managed by the Village. Typically, these types of changes are infrequent and may be done annually or prior to performing any analysis or reporting tasks with PAVER.

#### 4.3 PAVER inventory development

The Village's PAVER inventory was based on the IRIS GIS provided by CMAP. Relevant pavement data available in the IRIS GIS were supplemented with aerial imagery and field observations and entered in the Village's PAVER database. These data included: number of lanes, pavement surface type, approximate roadway width, and from/to intersections for each pavement section.

Roadways were also assigned "ranks" (i.e., priorities) of primary (P), secondary (S), and tertiary (T). Federal aid eligible roads were assigned the rank of primary, since these tend to be the more heavily trafficked roadways. Residential roads were assigned the rank of secondary, and unpaved roadways and roadways in industrial zones were assigned the rank of tertiary. Based on these definitions, it was determined that the Village only has secondary pavements.

A shapefile generated from the Village's GIS was linked to the PAVER database. This enables the Village to conveniently navigate the roadways within PAVER and generate a variety of map-based inventory and condition reports in PAVER. Historical M&R records provided by the Village were entered in the PAVER database as well as unit cost data.

#### 4.4 Inventory summary

The Village's roadway network consists of approximately 3.9 centerline miles of predominantly asphalt surfaced, two-lane roadways. Table 2 shows the distribution of the Village's roadway network in mileage and area by pavement rank, and Table 3 shows the distribution by pavement surface type.

| Rank         | Centerline Miles | Lane Miles | Area (SY) |
|--------------|------------------|------------|-----------|
| Secondary, S | 3.9              | 7.8        | 61,411    |
| Total        | 3.9              | 7.8        | 61,411    |

#### Table 2. Roadway summary data by pavement rank.

| Surface Type | <b>Centerline Miles</b> | Lane Miles | Area (SY) |
|--------------|-------------------------|------------|-----------|
| Asphalt, AC  | 3.9                     | 7.8        | 61,411    |
| Total        | 3.9                     | 7.8        | 61,411    |

| Table 3. Roadway summary | v data by navemen  | t surface type.  |
|--------------------------|--------------------|------------------|
| Tuble of Roudway Summar  | y unite by paromon | c sur face cyper |

Appendix A maps A-1 and A-2 present pavement rank and surface type data graphically.

#### **5 PAVEMENT CONDITION INSPECTION**

#### 5.1 Foreword

This section discusses the second task of this project: Performing a comprehensive pavement condition survey of the Village's roadways. The condition survey included the collection of high-resolution pavement imagery and profile measurements using a state-of-the-art PathRunner pavement condition survey system. The collected data were analyzed and PCI and IRI values were calculated for each of the Village's roadways surveyed. This section describes the pavement condition survey system, the data collection methodology, how the collected data were analyzed, and a discussion of field observations. It concludes with several examples of pavement conditions from the Village's roadways.

#### 5.2 Objective

The objective of the pavement condition survey is to assess the existing structural integrity and surface operational condition of the Village's roadways. The survey provides a comprehensive snapshot of pavement conditions at the time of data collection.

Moving forward, the Village should perform pavement condition surveys on a routine basis to objectively monitor pavement performance, determine near-term M&R needs, evaluate the effectiveness of M&R activities, develop pavement deterioration trends, and forecast near- and long-term pavement M&R needs.

#### 5.3 Pavement condition data acquisition

G&AI deployed a state-of-the-art PathRunner pavement data collection system to capture high-resolution pavement imagery and surface data necessary to assess the condition of the Village's roadways. The PathRunner system is shown in Figure 8.



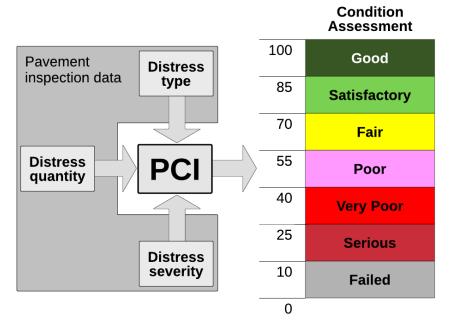
Figure 8. PathRunner pavement condition data collection system.

The PathRunner was driven on all roadways within the Village. By agreement with CMAP, only a single lane of two-lane roadways was collected and the outermost lanes in both directions of four-lane and greater roadways were collected. Based on G&AI's experience, contiguous lanes are usually of similar

character, and this inspection approach was deemed to be cost effective for the Village while still providing sufficiently detailed information to assess existing pavement conditions. The PathRunner system continuously collected the following data for each roadway:

- High-resolution 2D and 3D pavement images for evaluating pavement distresses and determining Pavement Condition Index (PCI) values.
- Transverse profiles to measure rutting.
- Longitudinal profiles to calculate International Roughness Index (IRI) values.
- High-resolution, forward-facing, right-of-way images for manual review of all data.

These data were processed using automated tools verified by manual review to assess pavement conditions, and the results were entered in the Village's PAVER database.


#### 5.4 Pavement Condition Index (PCI) method

The pavement condition survey was performed following the PCI method. The PCI method is based on a set of definitions and procedures for measuring pavement distress types, severities, and quantities during a field inspection. This information is then distilled into a PCI value, which provides an indication of the structural integrity and surface operational condition (roughness) for a pavement section. The PCI method is widely used and provides a significantly more objective and repeatable method for assessing pavement condition than inherently subjective windshield surveys commonly used in the past.

The Village's roadway network consists primarily of asphalt pavements with only a few concrete and gravel roadways. During a PCI inspection, several distress types are identified and evaluated for asphalt pavements, as shown in Table 4. The severity and quantity of each observed distress is recorded, and these data are then input into the PCI algorithm to calculate a PCI value, as shown in Figure 9.

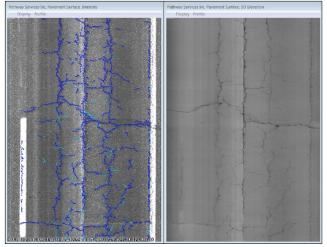
| Asphalt Pavement Dis<br>Distress        | Cause              |
|-----------------------------------------|--------------------|
| Alligator Cracking                      | Load               |
| Bleeding                                | Other              |
| Block Cracking                          | Climate/Durability |
| Bumps and Sags                          | Other              |
| Corrugation                             | Other              |
| Depression                              | Other              |
| Edge Cracking                           | Load               |
| Joint Reflection<br>Cracking            | Climate/Durability |
| Lane/Shoulder<br>Drop-Off               | Other              |
| Longitudinal and<br>Transverse Cracking | Climate/Durability |
| Patching and Utility<br>Cut Patching    | Other              |
| Polished Aggregate                      | Other              |
| Pothole                                 | Load               |
| Railroad Crossing                       | Other              |
| Rutting                                 | Load               |
| Shoving                                 | Other              |
| Slippage Cracking                       | Other              |
| Swell                                   | Other              |
| Raveling                                | Climate/Durability |
| Weathering                              | Climate/Durability |

| Concrete Pavement Distresses |                    |  |  |
|------------------------------|--------------------|--|--|
| Distress                     | Cause              |  |  |
| Blowup/Buckling              | Climate/Durability |  |  |
| Corner Break                 | Load               |  |  |
| Divided Slab                 | Load               |  |  |
| Durability ("D")             |                    |  |  |
| Cracking                     | Climate/Durability |  |  |
| Faulting                     | Other              |  |  |
| Joint Seal Damage            | Climate/Durability |  |  |
| Lane/Shoulder                |                    |  |  |
| Drop-Off                     | Other              |  |  |
|                              |                    |  |  |
| Linear Cracking              | Load               |  |  |
| Patching, Large and          |                    |  |  |
| Utility Cuts                 | Other              |  |  |
|                              |                    |  |  |
| Patching, Small              | Other              |  |  |
|                              |                    |  |  |
| Polished Aggregate           | Other              |  |  |
| Popouts                      | Other              |  |  |
| Pumping                      | Other              |  |  |
| Punchout                     | Load               |  |  |
| Railroad Crossing            | Other              |  |  |
| Scaling, Map Cracking,       |                    |  |  |
| and Crazing                  | Other              |  |  |
| Shrinkage Cracks             | Climate/Durability |  |  |
| Spalling, Corner             | Climate/Durability |  |  |
| Spalling, Joint              | Climate/Durability |  |  |



#### Figure 9. PCI inputs and the Village's assessment scale.

If properly designed and constructed, a new pavement begins its service life with a PCI of 100. Because of distress caused by vehicle loads, environmental factors, and aging, a pavement deteriorates over time. For each combination of distress type, severity level, and quantity observed during the inspection, points

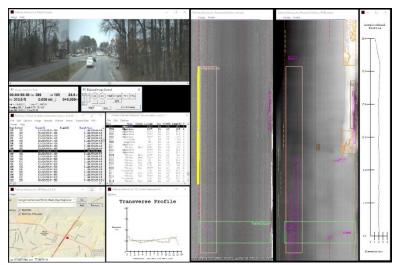

are deducted from the initial value of 100, thereby decreasing the PCI. When multiple distresses are present, the "deduct values" are modified such that the impact of multiple distresses is not unnecessarily compounded. Due to the complexity of the PCI algorithm, PCI values are typically computed using a pavement management software package, such as PAVER. It is important to note that the PCI method does not directly measure the load carrying capacity or the rideability of a pavement. Structural testing combined with coring is needed to determine permissible pavement loadings.

#### 5.5 Pavement Condition Index (PCI) data interpretation

The PathRunner system captures 2D and 3D images of the roadway surface from which pavement surface distresses are evaluated. During the data collection effort, G&AI extracted pavement distress data from

georeferenced digital images and rutting measurements from transverse profile measurement to determine PCI values. This process involves four distinct steps:

- 1. AutoCrack Software This software detects cracking in the pavement imagery.
- 2. AutoClass Software This software classifies the type of cracking detected.
- Manual image rating G&AI's team of trained and experienced raters review the imagery and identify any distress types that the automated crack detection and classification software did not observe or incorrectly identified. Performing this manual image rating is considered the Quality Control (QC) review assuring detailed accuracy and completeness of the ratings.




Steps 1 and 2: *Initial Automated Crack Detection and Rutting Analyses* 

4. **Quality Assurance (QA) rating** – An independent team of G&AI's raters and project engineers perform a systematic QA review of the rated data to ensure proper evaluation of the collected imagery prior to import into PAVER.

The QC and QA ratings are the most important steps in the project. G&AI uses the PathView software for evaluating distresses using both automated algorithms and manual supplemental rating. All QC/QA is performed by highly trained and experienced engineers and technicians using PathView. The same software system has been used for more than 25 state DOTs and several municipal agency pavement condition survey projects and is a well proven review tool.

In addition to capturing 2D and 3D imagery from which pavement surface



Steps 3 and 4: Manual Rating and QC/QA of Pavements using PathView

distresses are evaluated, the PathRunner system also captures high-resolution longitudinal and transverse profiles of the roadway surface at 2mm intervals. The longitudinal profile data are analyzed to determine the IRI values, or the "roughness" of the roadway, and the transverse profiles are used to measure rutting.

#### 5.6 Existing pavement conditions and field observations

The collected pavement survey data were used to calculate a PCI value for each pavement section in the Village. Table 5 shows the pavement condition assessment criteria used to analyze the pavement network.

| Category     | Typical Distresses and Typical Level of M&R Needed                                                                                                                                                                                                                                                                      | PCI<br>Range |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Good         | Longitudinal and transverse cracking and weathering of surface<br><b>Preventive maintenance:</b> Crack sealing and surface treatments                                                                                                                                                                                   | 86-100       |
| Satisfactory | More extensive longitudinal and transverse cracking and weathering of surface<br><b>Preventive maintenance:</b> <i>Crack sealing and surface treatments</i>                                                                                                                                                             | 71-85        |
| Fair         | <ul> <li>Extensive longitudinal and transverse cracking, early stage alligator (fatigue) cracking, early stage rutting, and weathering of surface</li> <li>Global preventive maintenance and localized repairs:</li> <li>Localized surface and/or full-depth patching, surface treatments, and thin overlays</li> </ul> | 56-70        |
| Poor         | More extensive and severe longitudinal and transverse cracking, alligator (fatigue)<br>cracking, rutting, and weathering of surface<br><b>Major rehabilitation:</b> <i>Localized full-depth patching,</i><br><i>mill and overlays, and traditional overlays</i>                                                         | 41-55        |
| Very Poor    | More extensive and more severe longitudinal and transverse cracking, alligator (fatigue)<br>cracking, rutting, weathering of surface, potholes<br><b>Major rehabilitation:</b> <i>Full-depth patching, mill and overlays,</i><br><i>traditional overlays, and reconstruction</i>                                        | 26-40        |
| Serious      | Extensive and severe failure of pavement surface Major rehabilitation: Reconstruction                                                                                                                                                                                                                                   | 11-25        |
| Failed       | Complete failure of pavement surface Major rehabilitation: Reconstruction                                                                                                                                                                                                                                               | 0-10         |

| Table 5. | Village's | pavement condition | categories. |
|----------|-----------|--------------------|-------------|
|----------|-----------|--------------------|-------------|

At the time of G&AI's inspection, the Village's pavements were found to be in overall "poor" condition and have an average PCI of 44. The condition distribution of the Village's pavements at the time of inspection is shown in Figure 10, and detailed condition maps can be found in Appendix A.

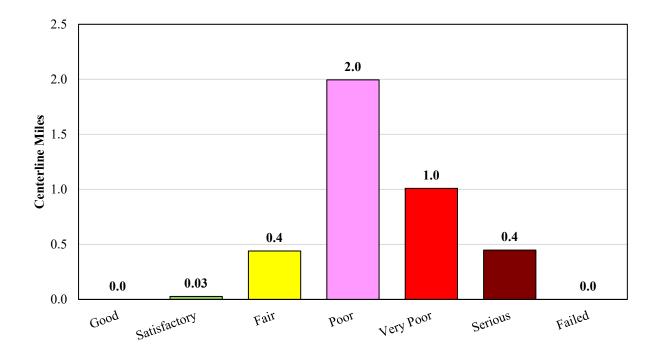



Figure 10. Village's roadway pavement condition distribution by PCI category.

Pavement condition data summarized by pavement ranks and surface types are presented in the following two tables, respectively.

| Rank         | <b>Centerline Miles</b> | Lane Miles | Area (SY) | PCI | IRI |
|--------------|-------------------------|------------|-----------|-----|-----|
| Secondary, S | 3.9                     | 7.8        | 61,411    | 44  | 336 |
| Total        | 3.9                     | 7.8        | 61,411    | 44  | 336 |

| Table 7. Ro | adway summary | condition data | by pavemen | t surface type. |
|-------------|---------------|----------------|------------|-----------------|
|             |               |                |            |                 |

| Surface Type | <b>Centerline Miles</b> | Lane Miles | Area (SY) | PCI | IRI |
|--------------|-------------------------|------------|-----------|-----|-----|
| Asphalt, AC  | 3.9                     | 7.8        | 61,411    | 44  | 336 |
| Total        | 3.9                     | 7.8        | 61,411    | 44  | 336 |

The causes of pavement deterioration as quantified by the PCI may be divided into three general categories:

- Vehicle load related.
- Climate/durability related.
- Other (construction defects and material issues).

Pavement deterioration and ultimate failure is a complex process that often involves a combination of several deterioration mechanisms working together. The deterioration observed on the Village's

pavements was caused primarily by a mixture of load- and climate-related distresses. Vehicle load-related distresses, including alligator cracking and rutting, were pronounced on many of the Village's roadways and accounted for most of the distress negatively impacting overall roadway conditions. In addition, climate-related distresses, including longitudinal and transverse cracking and block cracking, were found across the Village's pavement inventory.

In practice, visually observed pavement distresses collected during a network-level condition survey are used to determine the likely mechanism(s) contributing to the deterioration of a roadway. However, prior to developing a specific M&R strategy, the root cause of pavement deterioration should be determined. Determining the root cause of pavement deterioration may be accomplished through an appropriate combination of traffic load analyses, drainage investigations, structural testing, coring, and material testing.

For example, vehicle load-related distresses such as alligator cracking may be addressed through load analyses and material testing. Contributing root causes may range from the roadway consistently exposed to loads in excess of its design loading to the pavement section having simply reached the end of its design life. Climate/durability-related distresses, such as transverse cracking, may result from a combination of freeze/thaw cycling and oxidation (embrittlement) of the asphalt layer. The cause(s) of "other" distresses may be determined through a combination of coring, boring, and material testing.

In addition to PCI values, IRI values were determined for each of the Village's roadways. IRI values, reported in inches per mile, describe the amount of roughness in both wheel paths over a given length of pavement. The IRI is a standard measure of roughness used worldwide. The Village's IRI assessment scale is shown in Table 8.

| Category | IRI Value |
|----------|-----------|
| Smooth   | 0-200     |
| Marginal | 201-400   |
| Rough    | >401      |

Table 8: Village's IRI assessment criteria.

At the time of G&AI's inspection, the Village's pavements were found to be in overall "marginally rough" condition, with an average IRI of 336. Detailed condition maps can be found in Appendix A.

It is worth noting that IRI and PCI values do not necessarily correlate with one another. A roadway can ride well yet still be structurally deficient and in need of major M&R, and vice versa. For example, asphalt-surfaced roadways supported by structurally adequate base (e.g., crushed rock) and subgrade (e.g., existing soil) layers may exhibit extensive cracking in the asphalt surface layer due to fatigue failure of the asphalt. In situations such as these, removal of the existing asphalt layer and replacement with a thicker layer may be enough to rehabilitate the pavement. Conversely, a roadway that rides poorly may be structurally adequate and may only require minimal rehabilitation. Poor construction practices may unfortunately lead to roughness being "built into" an otherwise structurally adequate roadway at the time of construction. Roadways exhibiting this type of roughness may require grinding and/or an additional surface course to remedy the issue.

#### 5.7 Example pavement conditions through the Village

Figure 11 illustrates a variety of pavement conditions observed throughout the Village during the pavement condition survey. The figure includes PCI and IRI values for each pavement section along with observed distress types and recommended M&R.

| Location + History                                                     | PCI<br>(IRI) | Recommended M&R<br>Activity (Typical)                                                                                                               |
|------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| H. J. Rogowski<br>(Section 10)<br>Last resurfacing<br>date 2007        | 72<br>(549)  | Preventive maintenance<br>Seal cracks as well as<br>paving lane joint and joints<br>between pavement and curb<br>and gutter + surface<br>treatment. |
| 116 <sup>th</sup> Pl.<br>(Section 10)<br>Last resurfacing<br>date 2007 | 58<br>(426)  | Preventive maintenance<br>Seal cracks as well as<br>paving lane joint and joints<br>between pavement and curb<br>and gutter + surface<br>treatment. |
| Meadow Ln.<br>(Section 50)<br>Last resurfacing<br>date 2007            | 49<br>(354)  | Major M&R<br>Localized structural<br>patching +<br>cold mill and overlay.                                                                           |
| Troy Ave.<br>(Section 20)<br>Last resurfacing<br>date 2000             | 28<br>(523)  | Major M&R<br>Localized structural<br>patching +<br>cold mill and overlay <u>or</u><br>reconstruction                                                |
| 114 <sup>th</sup> St.<br>(Section 10)<br>Last resurfacing<br>date 2000 | 25<br>(615)  | Major M&R<br>Reconstruction                                                                                                                         |

|  | Merrion Ln.<br>(Section 10)<br>Last resurfacing<br>date 1986 | 24<br>(493) | Major M&R<br>Reconstruction |
|--|--------------------------------------------------------------|-------------|-----------------------------|
|--|--------------------------------------------------------------|-------------|-----------------------------|

#### Figure 11. Pavement conditions observed during PCI inspection.

A distress observed on some of the Village's pavements was unsealed paving lane seams (cracks), as shown in several of the photos above. If left unsealed, paving lane seams can deteriorate rapidly and significantly reduce the life of the pavement. By sealing paving lane seams immediately following paving and routinely resealing them, this type of deterioration may be minimized or prevented.

#### 5.8 Summary

This section presented an overview of the methodology used to perform the 2019/2020 pavement condition survey and the results of the survey. A state-of-the-art PathRunner pavement condition survey system was deployed to collect pavement imagery and profile data on the Village's roadways. The collected data were analyzed, and PCI values and IRI values were determined for each of the roadways surveyed. The Village's roadways were found to be in overall "poor" condition with an average PCI of 44. Furthermore, the Village's roadways were found to be in overall "marginally rough" condition, with an average IRI of 336 inches/mile.

#### 6 MAINTENANCE AND REHABILITATION FUNDING ANALYSES

#### 6.1 Foreword

This section discusses the third task of this project: M&R needs analyses. This section discusses the results of the analyses performed for the Village's consideration, assumptions which shaped the analyses, and results of the analyses. The recommendations of these analyses are provided in this section and in Appendixes A through D.

#### 6.2 Objective

The M&R Planning module in PAVER provides *raw recommendations* of when and where pavement M&R activities are needed and approximately how much they will cost. The Village should use these raw recommendations to develop programmatic M&R plans for the Village's roadway network. These programmatic plans may be generated based on anticipated annual funding or with the goal of maintaining or achieving a desired pavement condition.

For the Village's roadways, two preliminary M&R analyses were performed:

- A series of **ten-year analyses** was performed to determine the impact of several funding levels on overall roadway conditions. The analyses included:
  - Assessing the impact of the Village's existing funding level.
  - Determining the annual funding level needed to maintain the Village's existing overall average roadway condition.
  - Determining the annual funding level needed to modestly increase the Village's overall average roadway condition to approximately 65.
  - Determining the annual funding level needed to eliminate the Village's major M&R backlog over a ten-year period.
- A **one-year analysis** was performed to identify pavements that may benefit from preventive maintenance activities, such as crack sealing or localized patching. Only pavements with a PCI of 65 or better were considered in this analysis.

The purpose of these analyses is to determine the appropriate funding level needed to manage the Village's roadways and provide general recommendations that will assist the Village in developing and evolving its M&R program. Additional analyses may be performed to assess either the impact of anticipated funding levels or to determine the funding levels needed to achieve a desired overall, network-average condition.

#### 6.3 Assumptions

The M&R analyses were based on the results of the fall of 2019 and spring of 2020 Pavement Condition Index (PCI) survey and the pavement inventory and historical work records provided by the Village and stored in the Village's PAVER database. The following assumptions were made in our analyses.

- Pavements considered candidates for preventive maintenance were determined based on their overall PCI values and the distresses observed on the pavement at the time of inspection. Pavements with PCI values of 65 or better were considered candidates for preventive maintenance.
- Recommended preventive maintenance policies for asphalt and concrete pavements are shown in Appendix C Tables C-1 and C-2, respectively. The policy tables show what type of repair activity should be applied to each distress type and severity combination. Table D-3

presents estimated unit costs for the maintenance activities recommended in tables D-1 and D-2.

- A pavement deterioration rate of roughly seven points per year was used based on the performance of the Village's resurfaced roads, which equates to a pavement life between resurfacings of approximately six years. This deterioration rate will be refined as more historical work records are entered in PAVER and more PCI inspection data become available over time.
- A Critical PCI value (the PCI value below which a pavement is considered a candidate for major M&R) of 55 was assumed for all pavement sections. Pavements at or below the Critical PCI during the ten-year analysis period triggered major M&R recommendations. (*Note: A PCI value of 55 has been initially chosen for all the Village's roadways as this numerical value straddles the "Fair" to "Poor" condition categories in the Village's PCI scale. Performing major M&R on pavements that are closer to a PCI of 55, rather than waiting for these pavements to deteriorate further is generally more cost effective.)*
- Unit costs used in these analyses were based on bid tabs provided by the Village and by costs reported by nearby municipalities.
  - ✓ Asphalt resurfacing ranged from approximately \$1.50 to more than \$5.00 a square foot depending roadway condition (i.e., lower PCI values may result in more patching and thicker resurfacing). Reconstruction was set at \$6.50 a square foot.
  - ✓ Concrete slab replacement costs ranged from \$5.00 to \$15.00 a square foot depending on roadway condition (i.e., lower PCI values result in more slab replacement). Reconstruction was set at \$20.00 a square foot.
- All analyses began in the fall of 2020 (November 1 start date), and an inflation rate of 3% was assumed.

#### 6.4 Results

The results of the PAVER M&R analyses are shown in the following two figures. Figure 12 illustrates the estimated ten-year change in pavement condition resulting from the analyzed funding scenarios, and Figure 13 depicts the estimated change in the Village's major M&R backlog for each funding scenario.

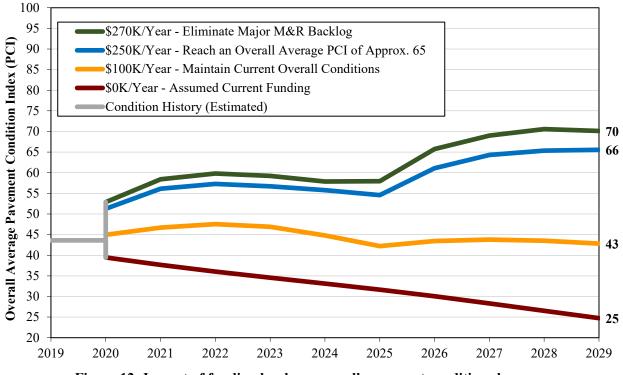
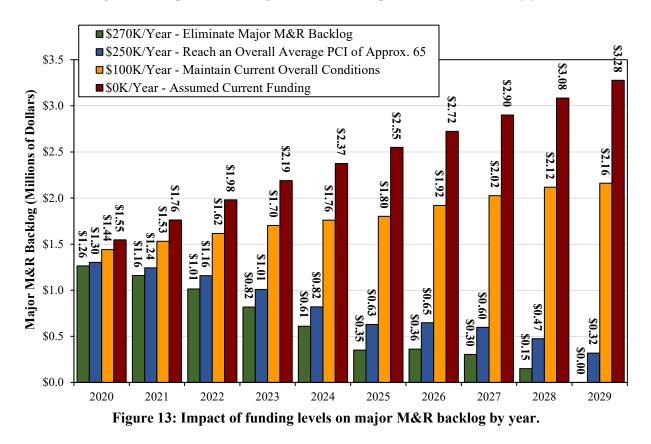




Figure 12: Impact of funding levels on overall pavement conditions by year.



The consequences of the annual funding scenarios are shown in Table 9. This table illustrates the concept of "total cost." By treating both the total annual M&R expenditures and the remaining major M&R backlog at the end of the ten-year period as costs to the Village, the benefit of increasing annual funding – which results in a smaller major M&R backlog – is clearly illustrated. Consequently, eliminating the major M&R backlog over a ten-year period results in the lowest total cost to the Village.

| Funding Scenario                                                   | Total Ten-Year<br>M&R Costs<br>(2020-2029) | Remaining M&R<br>Backlog <sup>1)</sup><br>(2029) | Total Ten-year<br>Cost <sup>2)</sup> | Projected PCI<br>(2029) |
|--------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------|--------------------------------------|-------------------------|
| \$0M/YR<br>(Assumed Current Funding)                               | \$0.0M                                     | \$3.3M                                           | \$3.3M                               | 25                      |
| Maintain Existing Overall<br>Average Conditions<br>(\$100K/YR)     | \$1.0M                                     | \$2.2M                                           | \$3.2M                               | 43                      |
| Increase Overall Average PCI<br>to Approximately 65<br>(\$250K/YR) | \$2.5M                                     | \$0.3M                                           | \$2.8M                               | 66                      |
| Backlog Elimination<br>(\$270K/YR)                                 | \$2.7M                                     | \$0.0M                                           | \$2.7M                               | 70                      |

Table 9. Estimated Ten-year Pavement M&R Costs

1) "M&R Backlog" equals the lump-sum cost to resurface/reconstruct all pavements at or below their critical PCI value.

2) "Total ten-year cost" equals the sum of the ten-year major M&R expenditures plus the remaining major M&R backlog at the end of the ten-year analysis period.

Appendix A map A-5 presents major M&R recommendations over the upcoming ten years given an unlimited budget. The map shows which roadways are recommended each year by PAVER. These recommendations do not consider geographic proximity. Consequently, these recommendations should be grouped into practical projects during the Village's planning process.

Map A-6 shows all roads that are candidates for preventive maintenance, such as crack sealing and localized patching. While crack sealing can be an effective treatment for preserving roadways in good condition, its utility diminishes when applied to roadways that are already in poor condition or are exhibiting signs of structural failure.

Appendix B presents tabular data showing the estimated cost to repair each of the roads recommended for major M&R over the next ten years assuming unlimited funding. *The costs presented in Appendix B should be considered rough estimates only and should not be considered engineering estimates.* These costs are based on a simple relationship between predicted PCI value and typical level of major M&R. Unit costs used in developing these relationships were based on bid tabs provided by the Village and by costs reported by neighboring municipalities.

Appendix D presents tabular data showing one-year estimated costs to apply preventive maintenance to each of the candidate roadways (i.e., roadways with PCI values of 65 or better). The total one-year preventive maintenance cost is estimated to be approximately \$7,000, as shown in Table 10. *The estimated costs presented in Appendix D should be considered rough estimates based on the assumed unit costs only and should not be considered engineering estimates.* 

| Maintenance Type   | Quantity | Units  | Est. Cost |
|--------------------|----------|--------|-----------|
| Crack Sealing - AC | 547      | FT     | \$547     |
| Patching - AC Deep | 574      | SF     | \$6,315   |
|                    |          | Total: | \$6,862   |

#### **Table 10. Preventive Maintenance Summary**

## 7 SUMMARY AND RECOMMENDATIONS

### 7.1 Summary

A pavement condition survey was performed in the fall of 2019 and spring of 2020 on the Village's roadways. The results of the survey provide a snapshot of roadway conditions at the time of the survey. PAVER was implemented for the Village's roadways and was populated with collected pavement condition data and available M&R history data provided by the Village.

For the Village to get the most return on investment out of PAVER, the system must be considered a living entity and be updated regularly with M&R activities as they are performed, M&R unit cost data, and routinely collected pavement condition data. With such attention, PAVER becomes a repository of accurate, up-to-date data and can aid the Village in more cost-effectively programming M&R funding and objectively analyzing the true cost-effectiveness of presently employed M&R activities.

Ten-year M&R funding analyses were performed on the Village's roadways using PAVER to: 1) evaluate the adequacy of the Village's existing funding level, 2) estimate the funding level needed to maintain the Village's existing roadway conditions, 3) estimate the funding level needed to modestly raise the overall condition of the Village's roadways, and 4) estimate the funding level needed to eliminate the Village's backlog of major M&R.

It was determined that the Village's existing funding level for major M&R is inadequate to maintain the current condition of the Village's roadway pavements. To maintain existing conditions, an increase in funding will be needed.

Based on this initial set of PCI data collection and analysis on the Village's roadways, G&AI respectfully offers the following broad recommendations.

## 7.2 Recommendations

#### 7.2.1 Implement pavement preservation techniques

As discussed in Section 2.6, preventive maintenance activities, such as crack sealing, localized patching, and surface treatments, can cost-effectively extend the life of a pavement. The Village should incorporate these strategies into its M&R planning.

The Village does not appear to have an active crack sealing program for its roadways. Moisture penetrates unsealed cracks and compromises the base structure of the pavement. Freeze/thaw cycling exacerbates the damage. Sealing cracks on roadways that are in relatively good condition is a simple, cost-effective method for pavement preservation. Crack sealing is a preventive maintenance activity and should not be applied on roadways that require major M&R.

Furthermore, the Village should focus on applying routine preventive maintenance to newly resurfaced or reconstructed roadways. It was observed that some paving lane seams throughout the Village had not been sealed. Like crack sealing, sealing the paving lane seams is a simple method for pavement preservation, and it may be included in construction specifications.

#### 7.2.2 Determine when pavements should be reconstructed rather than resurfaced

As the Village's asphalt-surfaced pavements age and are resurfaced multiple times, the performance of successive resurfacing projects will diminish. These "diminishing returns" occur because the sublayers of

the pavement (the pavement structure below the asphalt surface) continue to deteriorate due to moisture infiltration, freeze-thaw damage, and damage due to vehicular loading. The M&R history and performance of resurfaced roadways should be closely tracked to determine the optimal number of resurfacing projects that may be performed prior to reconstructing the pavement.

#### 7.2.3 Perform regular pavement condition inspections – every three years

To capitalize on the pavement condition survey and better track the condition of its pavements, the Village should continue to perform PCI surveys on a regular, three-year cycle. Doing so will enable the Village to:

- 1. Better track the deterioration of its pavements over time,
- 2. Identify pavement deterioration trends and use these trends to better predict future pavement conditions and then strategically apply M&R funding, and
- 3. Assess and track the effectiveness of its pavement preservation and major M&R activities.

The deterioration trends developed for this project were based on only one set of inspection data. Additional inspection data will help validate these trends and will improve forecasts, which may impact forecasted pavement conditions and recommended future M&R funding needs.

#### 7.2.4 Routinely update PAVER

PAVER should be updated annually following the paving season to capture major M&R activities, routine maintenance activities, and pavement inventory changes (new roadways, jurisdictional changes, realignments). PAVER relies on updated inventory and work history data in order to generate meaningful recommendations.

#### 7.2.5 Increase funding for pavement M&R

Based on the results of the pavement condition survey and forecasts of future pavement condition, the Village's current level of funding is inadequate to maintain the overall current condition of the Village's roadways. Managing a pavement network at an overall average PCI between 70 and 80 is more cost effective since funding is spent on less costly preventive maintenance and preservation activities rather than more expensive major M&R. As the Village moves forward, it is recommended that additional funding be allocated for M&R to improve the overall condition of the roadways so that they may be managed more cost-effectively.

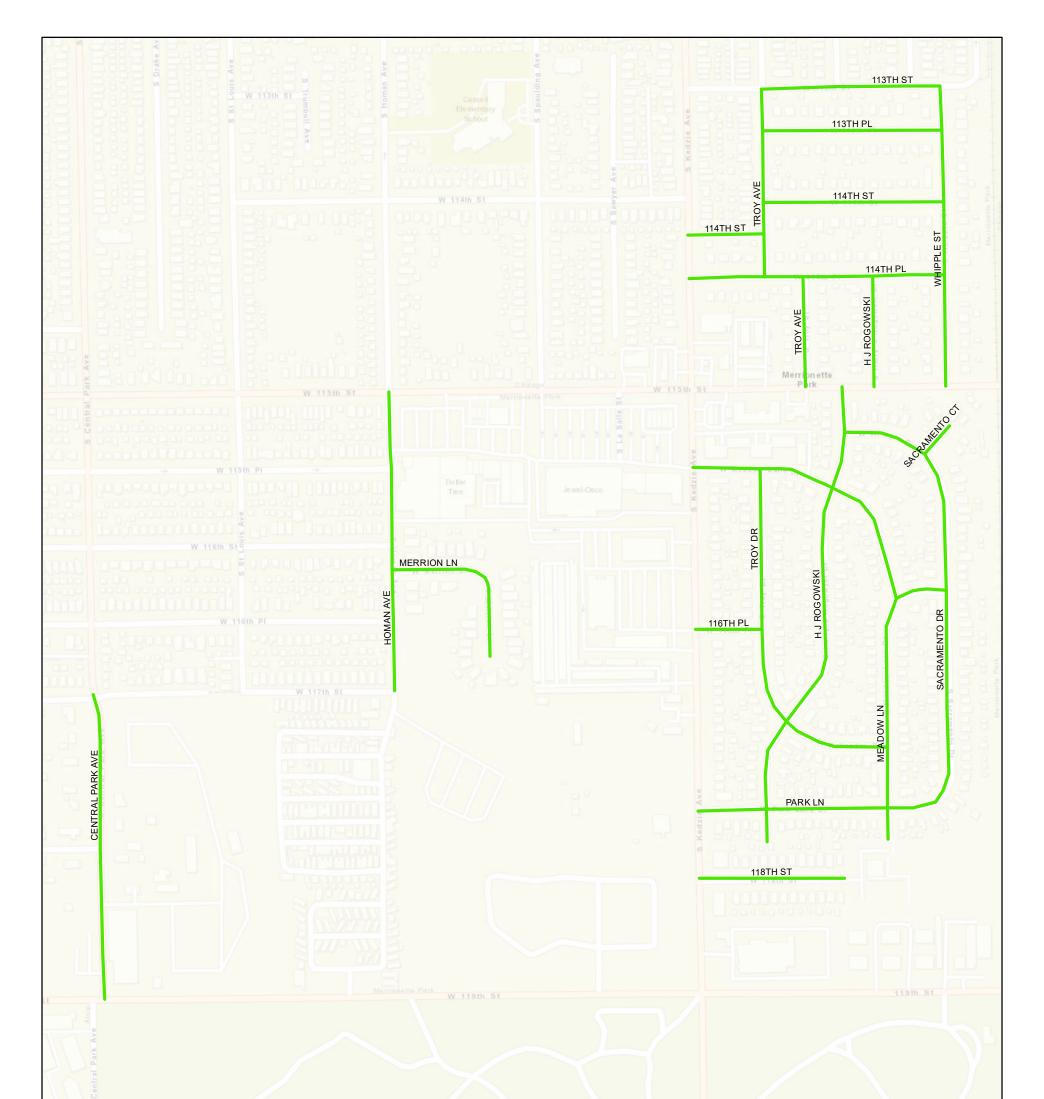
#### 7.2.6 Prioritize existing M&R funding to maximize shared benefit

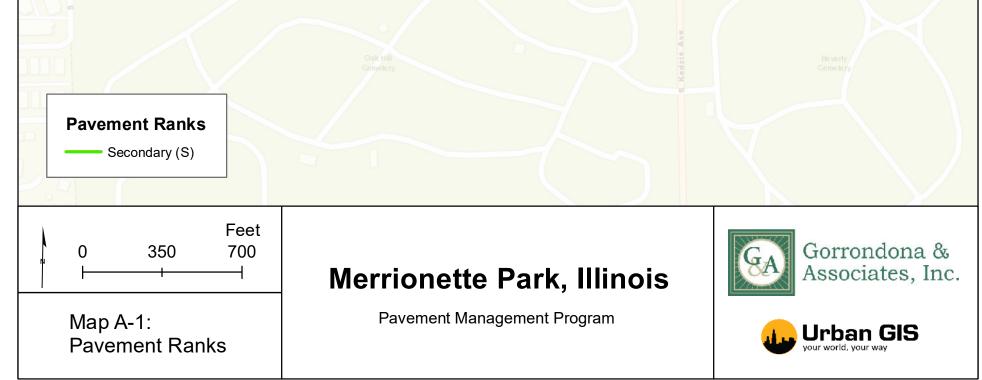
Currently, the Village's roadway M&R funding needs exceed available funding. The Village should focus major M&R activities on its most trafficked roadways. Doing so will maximize the overall shared benefit of the funds spent.

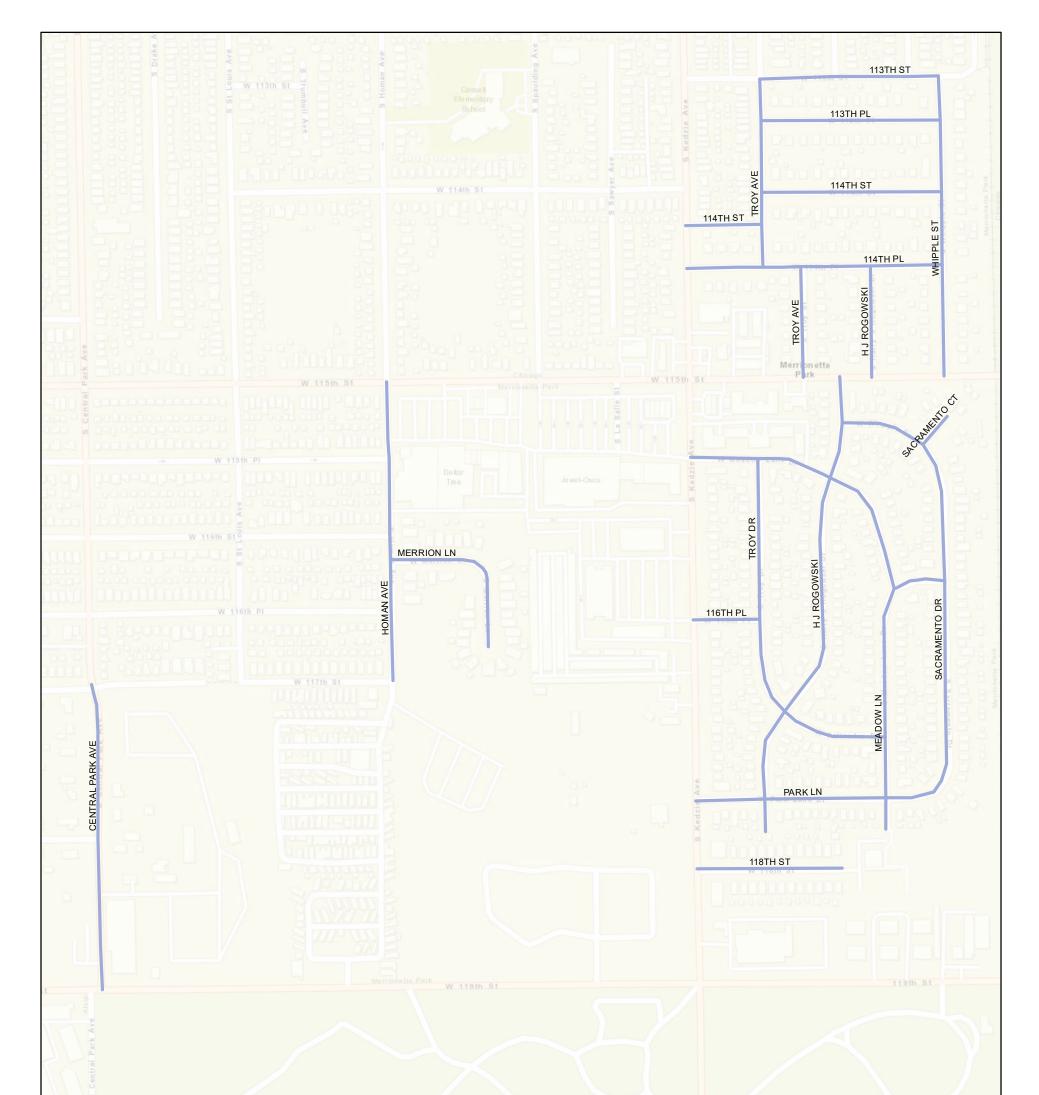
# APPENDIX A – PAVEMENT INVENTORY, CONDITION, AND RECOMMENDED M&R MAPS

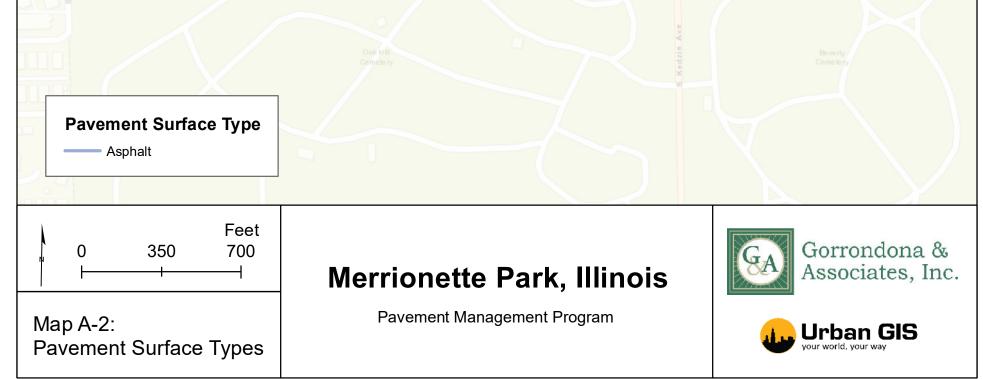
Map A-1: Pavement Ranks

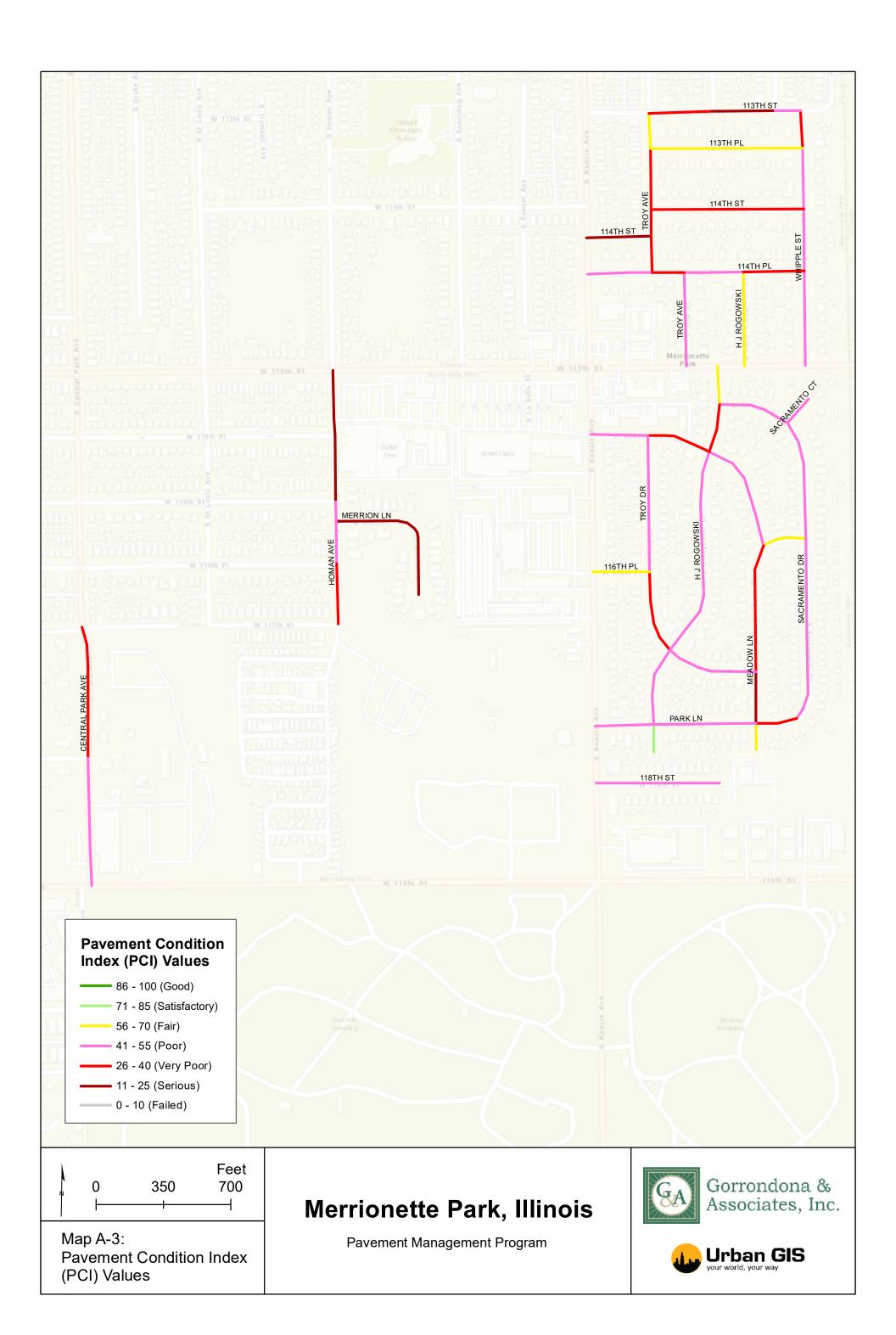
Map A-2: Pavement Surface Types

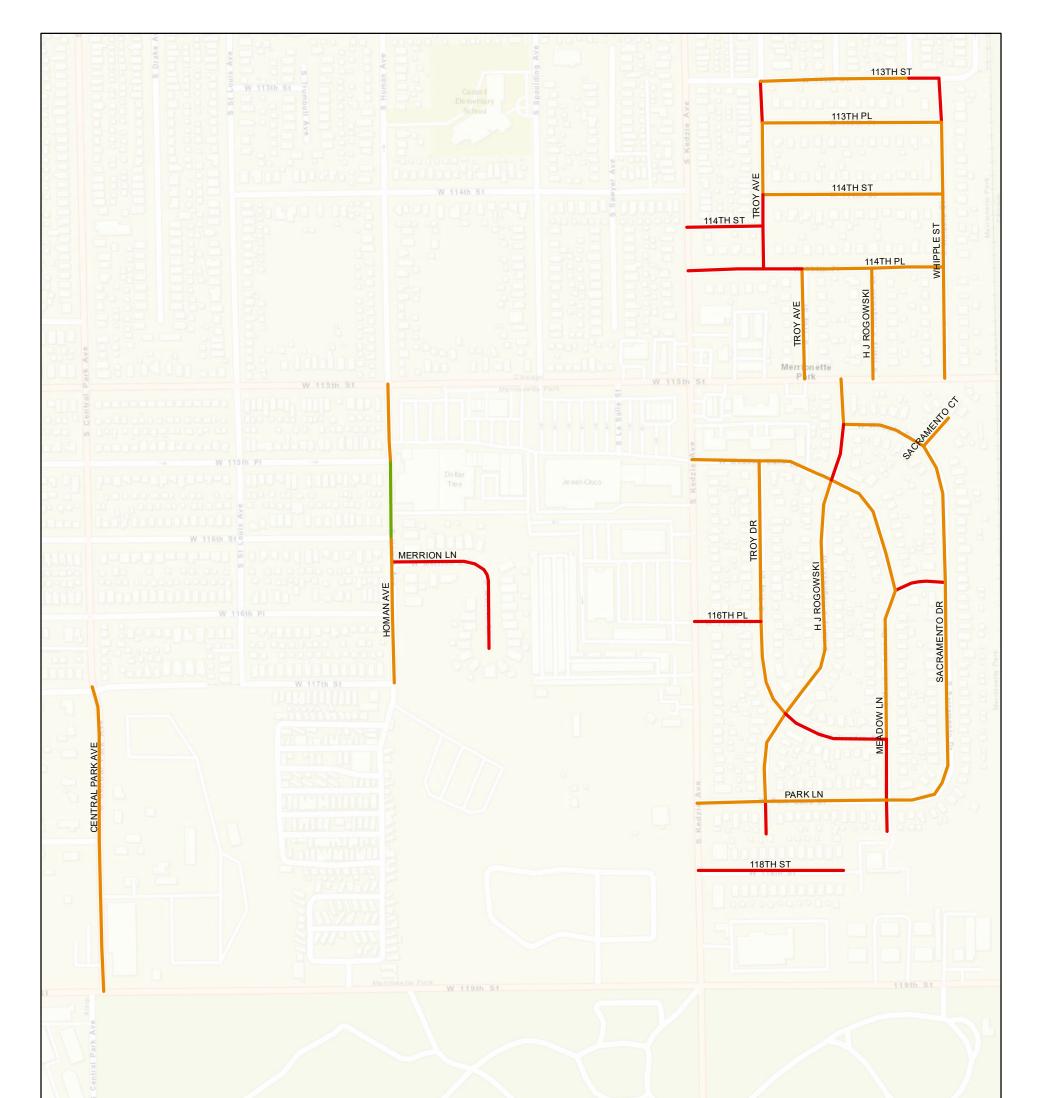

Map A-3: Pavement Condition Index (PCI) values

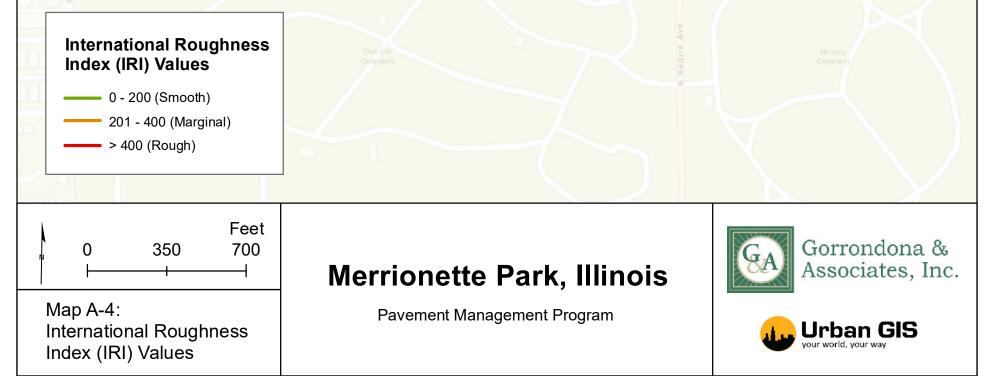

Map A-4: International Roughness Index (IRI) values

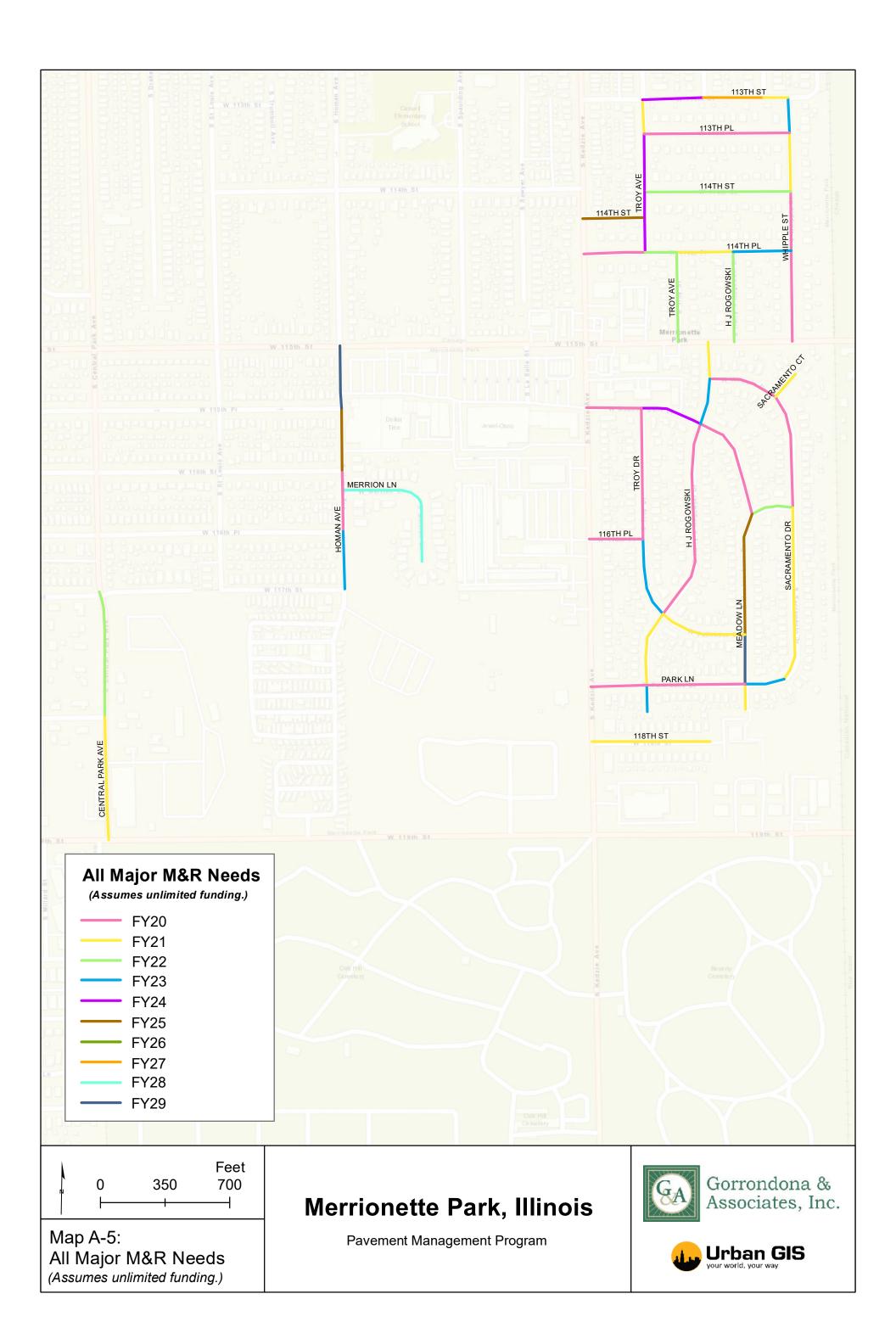

Map A-5: Ten-year major M&R recommendations – Recommendations assuming current funding

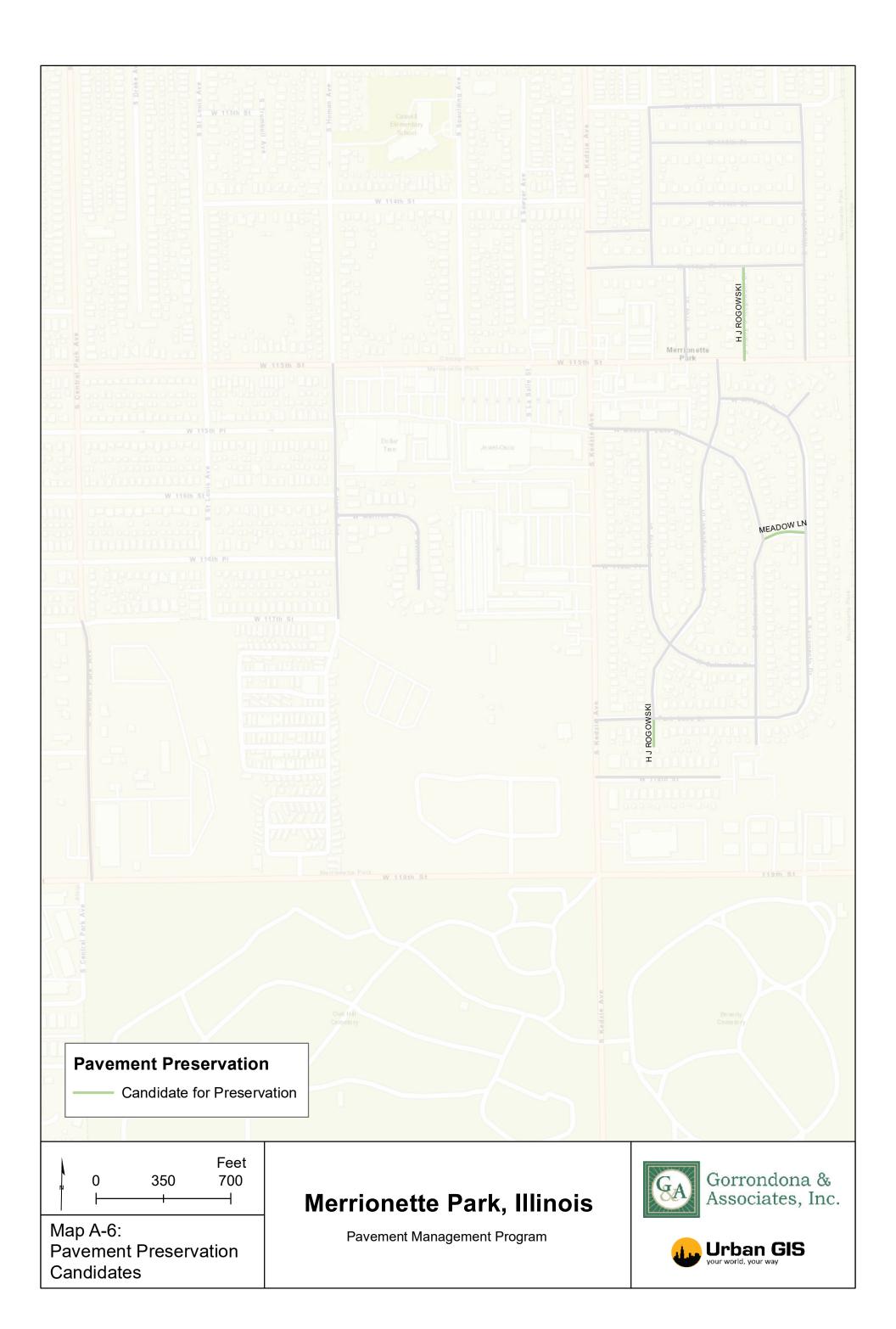

Map A-6: Ten-year major M&R recommendations – Recommendations assuming unlimited funding


Map A-7: Pavement preservation candidates - Current recommendations














## APPENDIX B – TABULATED TEN-YEAR MAJOR M&R RECOMMENDATIONS AND ESTIMATED COSTS – ASSUMING UNLIMITED FUNDING

| Pavement ID                                 | Road Name                     | From                          | То                  | Area   | PCI | Year | Cost      |
|---------------------------------------------|-------------------------------|-------------------------------|---------------------|--------|-----|------|-----------|
| MTPK::113TH PL::10                          | 113TH PLACE                   | TROY AVENUE                   | WHIPPLE STREET      | 20,499 | 53  | 2020 | \$26,341  |
| MTPK::114TH PL::10                          | 114TH PLACE                   | KEDZIE AVENUE                 | TROY AVENUE         | 8,673  | 52  | 2020 | \$11,633  |
| MTPK::116TH PL::10                          | 116TH PLACE                   | KEDZIE AVENUE                 | TROY DRIVE          | 7,614  | 54  | 2020 | \$8,909   |
| MTPK::H J RGWSK::30                         | H J ROGOWSKI                  | PALISADE DRIVE                | MEADOW LANE         | 28,289 | 47  | 2020 | \$51,182  |
| MTPK::HMN AV::20                            | HOMAN AVENUE                  | 116TH PLACE                   | MERRION LANE        | 7,317  | 50  | 2020 | \$11,030  |
| MTPK::HMN AV::30                            | HOMAN AVENUE                  | MERRION LANE                  | 116TH STREET        | 3,672  |     | 2020 | \$4,925   |
| MTPK::MDW LN::50                            | MEADOW LANE                   | H J ROGOWSKI                  | MEADOW LANE         | 15,538 |     | 2020 | \$26,544  |
| MTPK::MDW LN::70                            | MEADOW LANE                   | KEDZIE AVENUE                 | TROY DRIVE          | 7,686  |     | 2020 | \$11,157  |
| MTPK::PRK LN::10                            | PARK LANE                     | KEDZIE AVENUE                 | H J ROGOWSKI        | 7,874  |     | 2020 | \$11,429  |
| MTPK::PRK LN::20                            | PARK LANE                     | H J ROGOWSKI                  | MEADOW LANE         | 13,831 |     | 2020 | \$20,077  |
| MTPK::SCRMNT DR::20                         | SACRAMENTO DRIVE              | MEADOW LANE                   | SACRAMENTO COURT    | 16,071 |     | 2020 | \$24,225  |
| MTPK::SCRMNT DR::30                         | SACRAMENTO DRIVE              | SACRAMENTO COURT              | H J ROGOWSKI        | 9,785  |     | 2020 | \$17,282  |
| MTPK::TRY DR::20                            | TROY DRIVE                    | 116TH PLACE                   | MEADOW LANE         | 18,393 |     | 2020 | \$31,422  |
| MTPK::WHPPL ST::10                          | WHIPPLE STREET                | 115TH STREET                  | 114TH PLACE         | 12,730 |     | 2020 | \$17,074  |
| MTPK::WHPPL ST::20                          | WHIPPLE STREET                | 114TH PLACE                   | 114TH STREET        | 8,347  |     | 2020 | \$11,195  |
| MTPK::113TH ST::30                          | 113TH STREET                  | WHIPPLE STREET                | WHIPPLE STREET      | 3,452  |     | 2021 | \$6,436   |
| MTPK::114TH PL::30                          | 114TH PLACE                   | TROY AVENUE                   | H J ROGOWSKI        | 7,978  |     | 2021 | \$27,465  |
| MTPK::114TH FL::50                          | 114TH FLACE                   | KEDZIE AVENUE                 | END                 | 16,653 |     | 2021 | \$27,403  |
| MTPK::CTL PK AVE::10                        | CENTRAL PARK AVENUE           | 119TH STREET                  | 118TH STREET        | 19,897 |     | 2021 | \$56,666  |
| MTPK::CTL PK AVE::10<br>MTPK::H J RGWSK::20 | H J ROGOWSKI                  | PARK LANE                     | PALISADE DRIVE      | 19,897 |     | 2021 | \$36,666  |
|                                             | 1                             |                               |                     |        |     | 2021 |           |
| MTPK::H J RGWSK::50                         | H J ROGOWSKI                  | SACRAMENTO DRIVE<br>PARK LANE | 115TH STREET<br>END | 5,242  |     | 2021 | \$7,047   |
| MTPK::MDW LN::10                            | MEADOW LANE<br>PALISADE DRIVE | MEADOW LANE                   |                     | 3,571  |     | 2021 | \$4,641   |
| MTPK::PLSD DR::10                           |                               |                               | H J ROGOWSKI        | 12,308 |     |      | \$22,949  |
| MTPK::SCRMNT CT::10                         | SACRAMENTO COURT              | SACRAMENTO DRIVE              | END                 | 4,271  |     | 2021 | \$13,627  |
| MTPK::SCRMNT DR::10                         | SACRAMENTO DRIVE              | PARK LANE                     | MEADOW LANE         | 24,569 |     | 2021 | \$54,968  |
| MTPK::TRY AVE::40                           | TROY AVENUE                   | 113TH PLACE                   | 113TH STREET        | 4,798  |     | 2021 | \$6,661   |
| MTPK::WHPPL ST::30                          | WHIPPLE STREET                | 114TH STREET                  | 113TH PLACE         | 8,201  |     | 2021 | \$28,235  |
| MTPK::114TH PL::20                          | 114TH PLACE                   | TROY AVENUE                   | TROY AVENUE         | 4,373  |     | 2022 | \$20,044  |
| MTPK::114TH ST::20                          | 114TH STREET                  | TROY AVENUE                   | WHIPPLE STREET      | 20,579 |     | 2022 | \$94,315  |
| MTPK::CTL PK AVE::20                        | CENTRAL PARK AVENUE           | 118TH STREET                  | 117TH STREET        | 20,459 |     | 2022 | \$93,768  |
| MTPK::H J RGWSK::60                         | H J ROGOWSKI                  | 115TH STREET                  | 114TH PLACE         | 12,711 |     | 2022 | \$15,505  |
| MTPK::MDW LN::40                            | MEADOW LANE                   | MEADOW LANE                   | SACRAMENTO DRIVE    | 5,979  |     | 2022 | \$8,408   |
| MTPK::TRY AVE::10                           | TROY AVENUE                   | 115TH STREET                  | 114TH PLACE         | 12,619 |     | 2022 | \$55,289  |
| MTPK::114TH PL::40                          | 114TH PLACE                   | H J ROGOWSKI                  | WHIPPLE STREET      | 8,176  |     | 2023 | \$46,116  |
| MTPK::H J RGWSK::10                         | H J ROGOWSKI                  | PARK LANE                     | END                 | 3,717  |     | 2023 | \$5,368   |
| MTPK::H J RGWSK::40                         | H J ROGOWSKI                  | MEADOW LANE                   | SACRAMENTO DRIVE    | 6,528  |     | 2023 | \$38,961  |
| MTPK::HMN AV::10                            | HOMAN AVENUE                  | 117TH STREET                  | 116TH PLACE         | 10,287 |     | 2023 | \$58,029  |
| MTPK::PRK LN::30                            | PARK LANE                     | MEADOW LANE                   | SACRAMENTO DRIVE    | 5,565  |     | 2023 | \$29,796  |
| MTPK::TRY DR::10                            | TROY DRIVE                    | H J ROGOWSKI                  | 116TH PLACE         | 11,276 |     | 2023 | \$65,456  |
| MTPK::WHPPL ST::40                          | WHIPPLE STREET                | 113TH PLACE                   | 113TH STREET        | 5,044  |     | 2023 | \$28,450  |
| MTPK::113TH ST::10                          | 113TH STREET                  | TROY AVENUE                   | ALBANY AVENUE       | 8,536  | 22  | 2024 | \$60,157  |
| MTPK::MDW LN::60                            | MEADOW LANE                   | TROY DRIVE                    | H J ROGOWSKI        | 8,770  |     | 2024 | \$63,289  |
| MTPK::TRY AVE::20                           | TROY AVENUE                   | 114TH PLACE                   | 114TH STREET        | 4,900  | 17  | 2024 | \$35,852  |
| MTPK::TRY AVE::25                           | TROY AVENUE                   | 114TH STREET                  | 114TH STREET        | 3,634  | 16  | 2024 | \$26,588  |
| MTPK::TRY AVE::30                           | TROY AVENUE                   | 114TH STREET                  | 113TH PLACE         | 8,171  | 21  | 2024 | \$58,970  |
| MTPK::114TH ST::10                          | 114TH STREET                  | KEDZIE AVENUE                 | TROY AVENUE         | 8,739  | 11  | 2025 | \$65,855  |
| MTPK::HMN AV::40                            | HOMAN AVENUE                  | 116TH STREET                  | 115TH PLACE         | 11,050 | 10  | 2025 | \$83,270  |
| MTPK::MDW LN::30                            | MEADOW LANE                   | MEADOW LANE                   | PALISADE DRIVE      | 17,151 | 16  | 2025 | \$129,250 |
| MTPK::113TH PL::10                          | 113TH PLACE                   | TROY AVENUE                   | WHIPPLE STREET      | 20,499 | 55  | 2026 | \$28,255  |
| MTPK::114TH PL::10                          | 114TH PLACE                   | KEDZIE AVENUE                 | TROY AVENUE         | 8,673  | 55  | 2026 | \$11,954  |
| MTPK::116TH PL::10                          | 116TH PLACE                   | KEDZIE AVENUE                 | TROY DRIVE          | 7,614  | 55  | 2026 | \$10,494  |
| MTPK::H J RGWSK::30                         | H J ROGOWSKI                  | PALISADE DRIVE                | MEADOW LANE         | 28,289 | 55  | 2026 | \$38,991  |
| MTPK::HMN AV::20                            | HOMAN AVENUE                  | 116TH PLACE                   | MERRION LANE        | 7,317  | 55  | 2026 | \$10,086  |
| MTPK::HMN AV::30                            | HOMAN AVENUE                  | MERRION LANE                  | 116TH STREET        | 3,672  | 55  | 2026 | \$5,061   |
| MTPK::MDW LN::50                            | MEADOW LANE                   | H J ROGOWSKI                  | MEADOW LANE         | 15,538 | 55  | 2026 | \$21,417  |
| MTPK::MDW LN::70                            | MEADOW LANE                   | KEDZIE AVENUE                 | TROY DRIVE          | 7,686  | 55  | 2026 | \$10,594  |
|                                             | PARK LANE                     | KEDZIE AVENUE                 | H J ROGOWSKI        | 7,874  | 55  | 2026 | \$10,853  |
| MTPK::PRK LN::10                            |                               | ILEBERT PROPERTY              |                     | ,,0,1  |     |      | +         |

| Pavement ID          | Road Name           | From             | То               | Area   | PCI | Year | Cost      |
|----------------------|---------------------|------------------|------------------|--------|-----|------|-----------|
| MTPK::SCRMNT DR::20  | SACRAMENTO DRIVE    | MEADOW LANE      | SACRAMENTO COURT | 16,071 | 55  | 2026 | \$22,151  |
| MTPK::SCRMNT DR::30  | SACRAMENTO DRIVE    | SACRAMENTO COURT | H J ROGOWSKI     | 9,785  | 55  | 2026 | \$13,486  |
| MTPK::TRY DR::20     | TROY DRIVE          | 116TH PLACE      | MEADOW LANE      | 18,393 | 55  | 2026 | \$25,352  |
| MTPK::WHPPL ST::10   | WHIPPLE STREET      | 115TH STREET     | 114TH PLACE      | 12,730 | 55  | 2026 | \$17,547  |
| MTPK::WHPPL ST::20   | WHIPPLE STREET      | 114TH PLACE      | 114TH STREET     | 8,347  | 55  | 2026 | \$11,505  |
| MTPK::113TH ST::20   | 113TH STREET        | ALBANY AVENUE    | WHIPPLE STREET   | 8,445  | 6   | 2027 | \$67,512  |
| MTPK::113TH ST::30   | 113TH STREET        | WHIPPLE STREET   | WHIPPLE STREET   | 3,452  | 55  | 2027 | \$4,901   |
| MTPK::114TH PL::30   | 114TH PLACE         | TROY AVENUE      | H J ROGOWSKI     | 7,978  | 55  | 2027 | \$11,326  |
| MTPK::118TH ST::10   | 118TH STREET        | KEDZIE AVENUE    | END              | 16,653 | 55  | 2027 | \$23,642  |
| MTPK::CTL PK AVE::10 | CENTRAL PARK AVENUE | 119TH STREET     | 118TH STREET     | 19,897 | 55  | 2027 | \$28,247  |
| MTPK::H J RGWSK::20  | H J ROGOWSKI        | PARK LANE        | PALISADE DRIVE   | 10,722 | 55  | 2027 | \$15,221  |
| MTPK::H J RGWSK::50  | H J ROGOWSKI        | SACRAMENTO DRIVE | 115TH STREET     | 5,242  | 55  | 2027 | \$7,441   |
| MTPK::MDW LN::10     | MEADOW LANE         | PARK LANE        | END              | 3,571  | 55  | 2027 | \$5,070   |
| MTPK::PLSD DR::10    | PALISADE DRIVE      | MEADOW LANE      | H J ROGOWSKI     | 12,308 | 55  | 2027 | \$17,473  |
| MTPK::SCRMNT CT::10  | SACRAMENTO COURT    | SACRAMENTO DRIVE | END              | 4,271  | 55  | 2027 | \$6,064   |
| MTPK::SCRMNT DR::10  | SACRAMENTO DRIVE    | PARK LANE        | MEADOW LANE      | 24,569 | 55  | 2027 | \$34,880  |
| MTPK::TRY AVE::40    | TROY AVENUE         | 113TH PLACE      | 113TH STREET     | 4,798  | 55  | 2027 | \$6,811   |
| MTPK::WHPPL ST::30   | WHIPPLE STREET      | 114TH STREET     | 113TH PLACE      | 8,201  | 55  | 2027 | \$11,643  |
| MTPK::114TH PL::20   | 114TH PLACE         | TROY AVENUE      | TROY AVENUE      | 4,373  | 55  | 2028 | \$6,399   |
| MTPK::114TH ST::20   | 114TH STREET        | TROY AVENUE      | WHIPPLE STREET   | 20,579 | 55  | 2028 | \$30,111  |
| MTPK::CTL PK AVE::20 | CENTRAL PARK AVENUE | 118TH STREET     | 117TH STREET     | 20,459 | 55  | 2028 | \$29,937  |
| MTPK::H J RGWSK::60  | H J ROGOWSKI        | 115TH STREET     | 114TH PLACE      | 12,711 | 55  | 2028 | \$18,599  |
| MTPK::MDW LN::40     | MEADOW LANE         | MEADOW LANE      | SACRAMENTO DRIVE | 5,979  | 55  | 2028 | \$8,749   |
| MTPK::MRRN LN::10    | MERRION LANE        | HOMAN AVENUE     | END              | 19,932 | 3   | 2028 | \$164,133 |
| MTPK::TRY AVE::10    | TROY AVENUE         | 115TH STREET     | 114TH PLACE      | 12,619 | 55  | 2028 | \$18,464  |
| MTPK::114TH PL::40   | 114TH PLACE         | H J ROGOWSKI     | WHIPPLE STREET   | 8,176  | 55  | 2029 | \$12,322  |
| MTPK::H J RGWSK::10  | H J ROGOWSKI        | PARK LANE        | END              | 3,717  | 55  | 2029 | \$5,602   |
| MTPK::H J RGWSK::40  | H J ROGOWSKI        | MEADOW LANE      | SACRAMENTO DRIVE | 6,528  | 55  | 2029 | \$9,838   |
| MTPK::HMN AV::10     | HOMAN AVENUE        | 117TH STREET     | 116TH PLACE      | 10,287 | 55  | 2029 | \$15,504  |
| MTPK::HMN AV::50     | HOMAN AVENUE        | 115TH PLACE      | 115TH STREET     | 11,101 | 0   | 2029 | \$94,156  |
| MTPK::MDW LN::20     | MEADOW LANE         | PALISADE DRIVE   | PARK LANE        | 6,976  | 0   | 2029 | \$59,170  |
| MTPK::PRK LN::30     | PARK LANE           | MEADOW LANE      | SACRAMENTO DRIVE | 5,565  | 55  | 2029 | \$8,387   |
| MTPK::TRY DR::10     | TROY DRIVE          | H J ROGOWSKI     | 116TH PLACE      | 11,276 | 55  | 2029 | \$16,995  |
| MTPK::WHPPL ST::40   | WHIPPLE STREET      | 113TH PLACE      | 113TH STREET     | 5,044  | 55  | 2029 | \$7,602   |

**APPENDIX C – PAVEMENT MAINTENANCE POLICIES AND UNIT COSTS** 

| Pavement Distress         | Severity | Recommended Maintenance Type | Units |
|---------------------------|----------|------------------------------|-------|
| Alligator Cracking        | Low      | Crack Sealing                | FT    |
| Alligator Cracking        | Medium   | Patching - AC Deep           | SF    |
| Alligator Cracking        | High     | Patching - AC Deep           | SF    |
| Block Cracking            | Low      | Crack Sealing - AC           | FT    |
| Block Cracking            | Medium   | Crack Sealing - AC           | FT    |
| Block Cracking            | High     | Patching - AC Shallow        | SF    |
| Bumps and Sags            | Medium   | Patching - AC Shallow        | SF    |
| Bumps and Sags            | High     | Patching - AC Deep           | SF    |
| Corrugation               | Medium   | Patching - AC Shallow        | SF    |
| Corrugation               | High     | Patching - AC Deep           | SF    |
| Depressions               | Medium   | Patching - AC Deep           | SF    |
| Depressions               | High     | Patching - AC Deep           | SF    |
| Edge Cracking             | Low      | Crack Sealing - AC           | FT    |
| Edge Cracking             | Medium   | Crack Sealing - AC           | FT    |
| Edge Cracking             | High     | Patching - AC Shallow        | SF    |
| Joint Reflection Cracking | Low      | Crack Sealing - AC           | FT    |
| Joint Reflection Cracking | Medium   | Crack Sealing - AC           | FT    |
| Joint Reflection Cracking | High     | Patching - AC Shallow        | SF    |
| Lane/Shoulder Dropoff     | Medium   | Shoulder leveling            | FT    |
| Lane/Shoulder Dropoff     | High     | Shoulder leveling            | FT    |
| Long. and Trans. Cracking | Low      | Crack Sealing - AC           | FT    |
| Long. and Trans. Cracking | Medium   | Crack Sealing - AC           | FT    |
| Long. and Trans. Cracking | High     | Patching - AC Shallow        | SF    |
| Patching and Utility Cuts | High     | Patching - AC Deep           | SF    |
| Potholes                  | Low      | Patching - AC Deep           | SF    |
| Potholes                  | Medium   | Patching - AC Deep           | SF    |
| Potholes                  | High     | Patching - AC Deep           | SF    |
| Rutting                   | Medium   | Patching - AC Shallow        | SF    |
| Rutting                   | High     | Patching - AC Deep           | SF    |
| Shoving                   | Medium   | Grinding (Localized)         | FT    |
| Shoving                   | High     | Grinding (Localized)         | FT    |
| Slippage Cracking         | Low      | Crack Sealing - AC           | FT    |
| Slippage Cracking         | Medium   | Patching - AC Shallow        | SF    |
| Slippage Cracking         | High     | Patching - AC Shallow        | SF    |

| <b>Pavement Distress</b>                      | Severity                                     | Recommended Maintenance Type | Units |
|-----------------------------------------------|----------------------------------------------|------------------------------|-------|
| Blow ups                                      | Medium                                       | Patching - PCC Full Depth    | SF    |
| Blow ups                                      | High                                         | Patching - PCC Full Depth    | SF    |
| Corner Breaks                                 | Low                                          | Crack Sealing - PCC          | FT    |
| Corner Breaks                                 | Medium                                       | Patching - PCC Full Depth    | FT    |
| Corner Breaks                                 | High                                         | Patching - PCC Full Depth    | SF    |
| Divided (Shattered) Slabs                     | Low                                          | Crack Sealing - PCC          | FT    |
| Divided (Shattered) Slabs                     | Medium                                       | Slab Replacement - PCC       | SF    |
| Divided (Shattered) Slabs                     | High                                         | Slab Replacement - PCC       | SF    |
| Durability (D) Cracking                       | Medium                                       | Patching - PCC Full Depth    | SF    |
| Durability (D) Cracking                       | High                                         | Slab Replacement - PCC       | SF    |
| Faulting                                      | Medium                                       | Grinding (Localized)         | FT    |
| Faulting                                      | High                                         | Grinding (Localized)         | FT    |
| Joint Seal Damage                             | tt Seal Damage Medium Joint Seal (Localized) |                              | FT    |
| Joint Seal Damage High Joint Seal (Localized) |                                              | Joint Seal (Localized)       | FT    |
| Lane/Shoulder Dropoff                         | Medium                                       | Shoulder leveling            | FT    |
| Lane/Shoulder Dropoff                         | High                                         | Shoulder leveling            | FT    |
| Linear Cracking                               | Low                                          | Crack Sealing - PCC          | FT    |
| Linear Cracking                               | Medium                                       | Crack Sealing - PCC          | FT    |
| Linear Cracking                               | High                                         | Patching - PCC Partial Depth | SF    |
| Patches, Large                                | High                                         | Patching - PCC Full Depth    | SF    |
| Patches, Small                                | High                                         | Patching - PCC Partial Depth | SF    |
| Punchouts                                     | Medium                                       | Patching - PCC Full Depth    | SF    |
| Punchouts                                     | High                                         | Slab Replacement - PCC       | SF    |
| Scaling                                       | High                                         | Slab Replacement - PCC       | SF    |
| Corner Spalls                                 | Medium                                       | Patching - PCC Partial Depth | SF    |
| Corner Spalls                                 | High                                         | Patching - PCC Partial Depth | SF    |
| Joint Spalls                                  | Medium                                       | Patching - PCC Partial Depth | SF    |
| Joint Spalls                                  | High                                         | Patching - PCC Partial Depth | SF    |

Table C-2. Recommended Concrete Pavement Maintenance Policy.

Table C-3. Estimate Unit Cost for Maintenance Activities.

| Maintenance Type             | Est. Unit Cost | Units |
|------------------------------|----------------|-------|
| Crack Sealing - AC           | \$1.00         | FT    |
| Joint Seal - Silicon         | \$2.75         | FT    |
| Crack Sealing - PCC          | \$1.50         | FT    |
| Grinding (Localized)         | \$4.00         | FT    |
| Joint Seal (Localized)       | \$1.50         | FT    |
| Patching - AC Deep           | \$11.00        | SF    |
| Patching - AC Leveling       | \$1.20         | SF    |
| Patching - AC Shallow        | \$5.50         | SF    |
| Patching - PCC Full Depth    | \$30.00        | SF    |
| Patching - PCC Partial Depth | \$7.00         | SF    |
| Shoulder leveling            | \$1.20         | FT    |
| Slab Replacement - PCC       | \$20.00        | SF    |

**APPENDIX D – TABULATED PREVENTIVE MAINTENANCE RECOMMENDATIONS** 

| Pavement ID         | Road Name    | From         | То               | Area   | Distress Type | Density | Maint. Activity    | Cost    |
|---------------------|--------------|--------------|------------------|--------|---------------|---------|--------------------|---------|
| MTPK::H J RGWSK::10 | H J ROGOWSKI | PARK LANE    | END              | 3,717  | ALLIGATOR CR  | 0.6%    | Crack Sealing - AC | \$14    |
| MTPK::H J RGWSK::10 | H J ROGOWSKI | PARK LANE    | END              | 3,717  | L & T CR      | 0.7%    | Crack Sealing - AC | \$26    |
| MTPK::H J RGWSK::10 | H J ROGOWSKI | PARK LANE    | END              | 3,717  | ALLIGATOR CR  | 1.2%    | Patching - AC Deep | \$810   |
| MTPK::H J RGWSK::60 | H J ROGOWSKI | 115TH STREET | 114TH PLACE      | 12,711 | ALLIGATOR CR  | 0.8%    | Crack Sealing - AC | \$43    |
| MTPK::H J RGWSK::60 | H J ROGOWSKI | 115TH STREET | 114TH PLACE      | 12,711 | L & T CR      | 0.3%    | Crack Sealing - AC | \$43    |
| MTPK::H J RGWSK::60 | H J ROGOWSKI | 115TH STREET | 114TH PLACE      | 12,711 | L & T CR      | 1.7%    | Crack Sealing - AC | \$216   |
| MTPK::H J RGWSK::60 | H J ROGOWSKI | 115TH STREET | 114TH PLACE      | 12,711 | ALLIGATOR CR  | 2.1%    | Patching - AC Deep | \$3,700 |
| MTPK::MDW LN::40    | MEADOW LANE  | MEADOW LANE  | SACRAMENTO DRIVE | 5,979  | L & T CR      | 3.1%    | Crack Sealing - AC | \$184   |
| MTPK::MDW LN::40    | MEADOW LANE  | MEADOW LANE  | SACRAMENTO DRIVE | 5,979  | L & T CR      | 0.4%    | Crack Sealing - AC | \$21    |
| MTPK::MDW LN::40    | MEADOW LANE  | MEADOW LANE  | SACRAMENTO DRIVE | 5,979  | ALLIGATOR CR  | 2.0%    | Patching - AC Deep | \$1,805 |

**APPENDIX E – PAVEMENT INVENTORY AND CONDITION TABULAR DATA** 

| Pavement ID          | Road Name           | From             | To               | Surface | Rank | Length (FT) | Width (FT) | Area (SF) | PCI | IRI |
|----------------------|---------------------|------------------|------------------|---------|------|-------------|------------|-----------|-----|-----|
| MTPK::113TH PL::10   | 113TH PLACE         | TROY AVENUE      | WHIPPLE STREET   | Asphalt | S    | 788         | 26         | 20,499    | 56  | 286 |
| MTPK::113TH ST::10   | 113TH STREET        | TROY AVENUE      | ALBANY AVENUE    | Asphalt | S    | 328         | 26         | 8,536     | 33  | 348 |
| MTPK::113TH ST::20   | 113TH STREET        | ALBANY AVENUE    | WHIPPLE STREET   | Asphalt | S    | 325         | 26         | 8,445     | 24  | 277 |
| MTPK::113TH ST::30   | 113TH STREET        | WHIPPLE STREET   | WHIPPLE STREET   | Asphalt | S    | 133         | 26         | 3,452     | 47  | 627 |
| MTPK::114TH PL::10   | 114TH PLACE         | KEDZIE AVENUE    | TROY AVENUE      | Asphalt | S    | 334         | 26         | 8,673     | 55  | 414 |
| MTPK::114TH PL::20   | 114TH PLACE         | TROY AVENUE      | TROY AVENUE      | Asphalt | S    | 168         | 26         | 4,373     | 40  | 501 |
| MTPK::114TH PL::30   | 114TH PLACE         | TROY AVENUE      | H J ROGOWSKI     | Asphalt | S    | 307         | 26         | 7,978     | 42  | 308 |
| MTPK::114TH PL::40   | 114TH PLACE         | H J ROGOWSKI     | WHIPPLE STREET   | Asphalt | S    | 314         | 26         | 8,176     | 38  | 330 |
| MTPK::114TH ST::10   | 114TH STREET        | KEDZIE AVENUE    | TROY AVENUE      | Asphalt | S    | 336         | 26         | 8,739     | 25  | 615 |
| MTPK::114TH ST::20   | 114TH STREET        | TROY AVENUE      | WHIPPLE STREET   | Asphalt | S    | 791         | 26         | 20,579    | 40  | 275 |
| MTPK::116TH PL::10   | 116TH PLACE         | KEDZIE AVENUE    | TROY DRIVE       | Asphalt | S    | 293         | 26         | 7,614     | 58  | 426 |
| MTPK::118TH ST::10   | 118TH STREET        | KEDZIE AVENUE    | END              | Asphalt | S    | 640         | 26         | 16,653    | 47  | 431 |
| MTPK::CTL PK AVE::10 | CENTRAL PARK AVENUE | 119TH STREET     | 118TH STREET     | Asphalt | S    | 663         | 30         | 19,897    | 44  | 353 |
| MTPK::CTL PK AVE::20 | CENTRAL PARK AVENUE | 118TH STREET     | 117TH STREET     | Asphalt | S    | 682         | 30         | 20,459    | 40  | 316 |
| MTPK::H J RGWSK::10  | H J ROGOWSKI        | PARK LANE        | END              | Asphalt | S    | 143         | 26         | 3,717     | 72  | 549 |
| MTPK::H J RGWSK::20  | H J ROGOWSKI        | PARK LANE        | PALISADE DRIVE   | Asphalt | S    | 412         | 26         | 10,722    | 45  | 349 |
| MTPK::H J RGWSK::30  | H J ROGOWSKI        | PALISADE DRIVE   | MEADOW LANE      | Asphalt | S    | 1,088       | 26         | 28,289    | 47  | 231 |
| MTPK::H J RGWSK::40  | H J ROGOWSKI        | MEADOW LANE      | SACRAMENTO DRIVE | Asphalt | S    | 251         | 26         | 6,528     | 36  | 443 |
| MTPK::H J RGWSK::50  | H J ROGOWSKI        | SACRAMENTO DRIVE | 115TH STREET     | Asphalt | S    | 202         | 26         | 5,242     | 60  | 283 |
| MTPK::H J RGWSK::60  | H J ROGOWSKI        | 115TH STREET     | 114TH PLACE      | Asphalt | S    | 489         | 26         | 12,711    | 70  | 291 |
| MTPK::HMN AV::10     | HOMAN AVENUE        | 117TH STREET     | 116TH PLACE      | Asphalt | S    | 312         | 33         | 10,287    | 38  | 242 |
| MTPK::HMN AV::20     | HOMAN AVENUE        | 116TH PLACE      | MERRION LANE     | Asphalt | S    | 222         | 33         | 7,317     | 52  | 211 |
| MTPK::HMN AV::30     | HOMAN AVENUE        | MERRION LANE     | 116TH STREET     | Asphalt | S    | 111         | 33         | 3,672     | 55  | 230 |
| MTPK::HMN AV::40     | HOMAN AVENUE        | 116TH STREET     | 115TH PLACE      | Asphalt | S    | 335         | 33         | 11,050    | 24  | 184 |
| MTPK::HMN AV::50     | HOMAN AVENUE        | 115TH PLACE      | 115TH STREET     | Asphalt | S    | 336         | 33         | 11,101    | 21  | 397 |
| MTPK::MDW LN::10     | MEADOW LANE         | PARK LANE        | END              | Asphalt | S    | 137         | 26         | 3,571     | 61  | 599 |
| MTPK::MDW LN::20     | MEADOW LANE         | PALISADE DRIVE   | PARK LANE        | Asphalt | S    | 268         | 26         | 6,976     | 20  | 532 |
| MTPK::MDW LN::30     | MEADOW LANE         | MEADOW LANE      | PALISADE DRIVE   | Asphalt | S    | 660         | 26         | 17,151    | 30  | 326 |
| MTPK::MDW LN::40     | MEADOW LANE         | MEADOW LANE      | SACRAMENTO DRIVE | Asphalt | S    | 230         | 26         | 5,979     | 65  | 483 |
| MTPK::MDW LN::50     | MEADOW LANE         | H J ROGOWSKI     | MEADOW LANE      | Asphalt | S    | 598         | 26         | 15,538    | 49  | 354 |
| MTPK::MDW LN::60     | MEADOW LANE         | TROY DRIVE       | H J ROGOWSKI     | Asphalt | S    | 337         | 26         | 8,770     | 32  | 311 |
| MTPK::MDW LN::70     | MEADOW LANE         | KEDZIE AVENUE    | TROY DRIVE       | Asphalt | S    | 296         | 26         | 7,686     | 53  | 266 |
| MTPK::MRRN LN::10    | MERRION LANE        | HOMAN AVENUE     | END              | Asphalt | S    | 767         | 26         | 19,932    | 24  | 493 |
| MTPK::PLSD DR::10    | PALISADE DRIVE      | MEADOW LANE      | H J ROGOWSKI     | Asphalt | S    | 473         | 26         | 12,308    | 47  | 410 |
| MTPK::PRK LN::10     | PARK LANE           | KEDZIE AVENUE    | H J ROGOWSKI     | Asphalt | S    | 303         | 26         | 7,874     | 53  | 372 |
| MTPK::PRK LN::20     | PARK LANE           | H J ROGOWSKI     | MEADOW LANE      | Asphalt | S    | 532         | 26         | 13,831    | 53  | 309 |
| MTPK::PRK LN::30     | PARK LANE           | MEADOW LANE      | SACRAMENTO DRIVE | Asphalt | S    | 214         | 26         | 5,565     | 40  | 290 |
| MTPK::SCRMNT CT::10  | SACRAMENTO COURT    | SACRAMENTO DRIVE | END              | Asphalt | S    | 164         | 26         | 4,271     | 43  | 205 |
| MTPK::SCRMNT DR::10  | SACRAMENTO DRIVE    | PARK LANE        | MEADOW LANE      | Asphalt | s    | 945         | 26         | 24,569    | 46  | 313 |
| MTPK::SCRMNT DR::20  | SACRAMENTO DRIVE    | MEADOW LANE      | SACRAMENTO COURT | Asphalt | s    | 618         | 26         | 16,071    | 52  | 282 |
| MTPK::SCRMNT DR::30  | SACRAMENTO DRIVE    | SACRAMENTO COURT | H J ROGOWSKI     | Asphalt | S    | 376         | 26         | 9,785     | 48  | 312 |
| MTPK::TRY AVE::10    | TROY AVENUE         | 115TH STREET     | 114TH PLACE      | Asphalt | s    | 485         | 26         | 12,619    | 41  | 230 |
| MTPK::TRY AVE::20    | TROY AVENUE         | 114TH PLACE      | 114TH STREET     | Asphalt | S    | 188         | 26         | 4,900     | 28  | 523 |

| Pavement ID        | Road Name      | From         | То           | Surface | Rank | Length (FT) | Width (FT) | Area (SF) | PCI | IRI |
|--------------------|----------------|--------------|--------------|---------|------|-------------|------------|-----------|-----|-----|
| MTPK::TRY AVE::25  | TROY AVENUE    | 114TH STREET | 114TH STREET | Asphalt | s    | 140         | 26         | 3,634     | 27  | 474 |
| MTPK::TRY AVE::30  | TROY AVENUE    | 114TH STREET | 113TH PLACE  | Asphalt | S    | 314         | 26         | 8,171     | 32  | 316 |
| MTPK::TRY AVE::40  | TROY AVENUE    | 113TH PLACE  | 113TH STREET | Asphalt | S    | 185         | 26         | 4,798     | 59  | 535 |
| MTPK::TRY DR::10   | TROY DRIVE     | H J ROGOWSKI | 116TH PLACE  | Asphalt | S    | 434         | 26         | 11,276    | 37  | 268 |
| MTPK::TRY DR::20   | TROY DRIVE     | 116TH PLACE  | MEADOW LANE  | Asphalt | S    | 707         | 26         | 18,393    | 49  | 289 |
| MTPK::WHPPL ST::10 | WHIPPLE STREET | 115TH STREET | 114TH PLACE  | Asphalt | S    | 490         | 26         | 12,730    | 55  | 247 |
| MTPK::WHPPL ST::20 | WHIPPLE STREET | 114TH PLACE  | 114TH STREET | Asphalt | S    | 321         | 26         | 8,347     | 55  | 302 |
| MTPK::WHPPL ST::30 | WHIPPLE STREET | 114TH STREET | 113TH PLACE  | Asphalt | S    | 315         | 26         | 8,201     | 42  | 228 |
| MTPK::WHPPL ST::40 | WHIPPLE STREET | 113TH PLACE  | 113TH STREET | Asphalt | S    | 194         | 26         | 5,044     | 38  | 425 |