

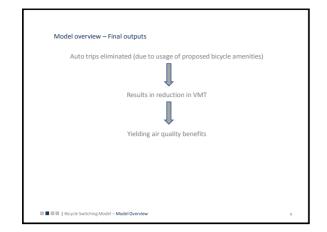
Outline

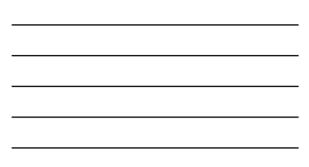
- 1. Purpose
- 2. Model overview
- 3. Current limitations
- 4. Bicycle usage survey

Bicycle Switching Model

Purpose

CMAQ funds improvements using performance-based criteria


Problem


- Current spreadsheet tool is simplistic and based on old data
- Regional travel demand model is too coarse for predicting bicycle demand at the desired level of sensitivity

Solution

New tool with more sensitivity to factors affecting cycling use
 Re-introduce variability to each day's mode choice decision

Bicycle Switching Model - Purpose

Model overview - Main analysis components

- 1. Identify trips that may be affected by the facility improvement
- 2. Determine the difference in travel costs due to the improvement
- 3. Estimate the probability of an auto trip switching to bicycle mode

Bicycle Switching Model – Model Overview

Model overview – Identify Trips

- Locate bicycle projects
 49 CMAQ proposals
- Create a 5-mile buffer for each project to identify area of impact
- Get trips from Activity-Based model that begin and end within a project buffer

Model overview – Determine travel costs

Generate routes between O-D pairs and summarize data for each route

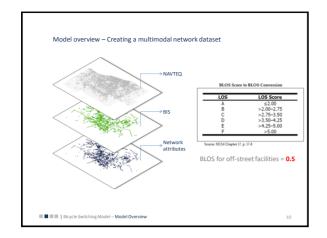
- Auto routes based on shortest time cost
- · Bike routes based on cost that is function of length and bicycle levelof-service (BLOS)

Bigger Bigger Switching Model – Model Overview

Model overview – Calculating Bicycle Level-of-Service

- BLOS is employed in highway capacity analysis to grade a road/path segment's perceived quality for bicycling based on measurable features of the facility
- CMAP calculated BLOS scores for the region using the Urban Street Segments methodology in Chapter 17 of the 2010 Highway Capacity Manual (using a 2012 IRIS dataset)

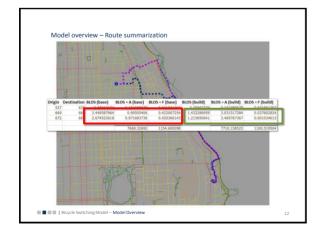
Bicycle Switching Model – Model Overview


Model overview – Calculating Bicycle Level-of-Service

- Traffic volume
- Percentage of trucks
- Pavement condition
- Number of lanes
- Lane Width
- Presence of a bike
- lane and/or paved shoulder Speed limit
- On-street parking utilization

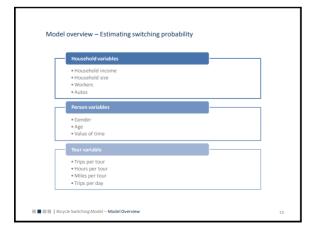
What about trails?

Bicycle Switching Model – Model Overview



Model overview - Route summarization

- Generate paths for each unique O-D pair
- Summarize data for base and build scenarios
 - Average BLOS score
 - Miles stratified by BLOS categories (A-F)
 - Miles stratified by 5 mph speed limit increments


Bigger Bigger Switching Model – Model Overview

13

Model overview – Switching model

- Estimate switching probability based on household, person and tour characteristics
- 2. Apply modal penalties and weights
- 3. Incorporate weather variability into modal cost difference
- 4. Tabulate modal shifts and report results

Bicycle Switching Model – Model Overview

	Switch To Bike (base)		PERCENT
Auto	0	_	
Auto	0		
Auto	1		

Г

A3rd St Access Bridge to Lakefront Trail	Zone 225	Annual Auto Trips Eliminated	
		781	2,241
Milwaukee and Lake Av Multi-use Path	468	1,430	3,22
Old Orchard Rd from Harms Rd to Woods Dr	522	71	
US 14/Northwest Hwy from Hough St to Lake Zurich Rd	982	294	73
Sycamore Av, Walnut Av and Unmarked Street Bike Lanes	381	51	14
Chestnut Av Multi-Use Path	471	61	7
Golf Rd Path from Roosevelt Blv to Ring Rd	427	152	35
1. 19/Irving Park Rd from Schaumburg Rd to Park Blv	323	183	356
Flag Creek Bicycle Corridor	619	1,237	4,247
108th Av Trail Connection	717	2,393	7,941
Ridgeland Av from College Dr to 135th St	702	183	725
Bike to Metra	736	821	2,69
North Aurora Rd Underpass at CN/E38E	1310	274	96

Current Limitations

Network data

- Applied Urban Streets method throughout, regardless of roadway type
- Use of default values in BLOS calculations
- BIS project data planning level data, not intended for routing

Model application

- Does not evaluate latent demand
- No empirical validation need to survey
- Not a routing tool does not assign bike trips to the network
 - Cannot answer the question: "How many people use this facility?"

Useful as planning/scoring tool, but not to make investment decisions

Bicycle usage survey

Currently gathering survey data to improve the bicycle switching model: https://cmapbicycleusage.metroquest.com

Bicycle Switching Model – Bicycle Usage Survey