Stormwater and Flooding ON TO 2050 Strategy Paper

CMAP Environment and Natural Resources Working Committee July 7, 2017

- Brief recap of purpose and scope
- Regional Flooding Susceptibility Index
- Draft policy framework
- Next Steps

- Integrate a better understanding of the extent and costs of both urban and riverine flooding, as well as how those could grow due to climate change, into ON TO 2050.
- Identify the barriers to effective stormwater management and develop policy approaches to reduce flooding impacts.
- Focus efforts in areas of greatest need in the region.
- Build connections with other policy work being developed for the next plan.

- Reviewed causes and drivers of flooding
- Summarized existing flooding impacts and extent
- Reviewed existing responses and approaches to stormwater and flood mitigation and prevention
- Identifying policy framework and priority areas for flooding mitigation activities

Regional Flooding Susceptibility Analysis

Purpose

Identify priority areas across the region for flooding mitigation activities.

Potential applications of the indexes

- Help CMAP focus Local Technical Assistance Projects.
- May help coordinate partners:
 - Inform open space preservation and restoration decisions?
 - Inform vulnerability assessments?
 - Other activities?

Regional Flooding Susceptibility Indexes

What it is:

- Uses flooding-related factors to identify priority areas based on past flooding locations
- Study area:
 - Developed areas in the CMAP region
 - Riverine Index: areas within FEMA 100-yr floodplain/MWRD 100-yr inundation
 - Urban Index: outside of these areas

What it's not:

- Floodplain Inundation mapping
- Sewer System modeling
- Rainfall-runoff modeling

Statistical method to identify higher risk areas based on the observed relationship between reported flooding locations and flooding-related factors.

 $\frac{Percent of flood events in factor category}{Percent of study area in factor category} = Frequency ratio$

Calculation example: Combined Sewer Service Areas for the Urban Index

Factor	Categories	Percent (%) of Study Area	Percent (%) of Flood Locations	Frequency Ratio
Combined Sewer	Present	15.8%	27.4%	2.35
Service Area	Absent	84.2%	72.6%	0.75

27.4% of flood locations in "Present" category 15.8% of study area is "Present" category $= FR \ of \ 2.35$

Five Step Process

Step 1: Assemble & categorize reported flooding locations
Step 2: Assemble & categorize potential flooding-related factors
Step 3: Calculate the frequency ratio for factor categories
Step 4: Add frequency ratios for selected factors
Step 5: Access accuracy of indexes

Frequency Ratio Approach

Step 1: Assemble and categorize reported flooding locations

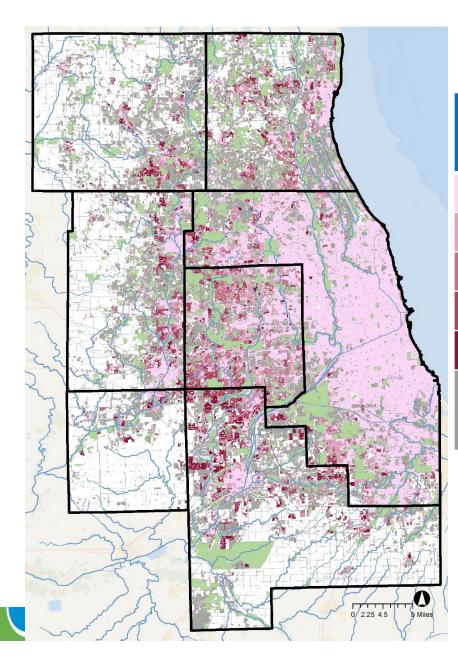
- Address level NFIP claims from 1978 to 2016
- Point data for City of Chicago 311 standing water calls (related to mosquito abatement) from 2010 to 2017

Step 2: Assemble and categorize potential flooding-related factors

- Percent Impervious Cover
- Age of First Development
- Combined Sewer Service Areas
- Elevation derivatives (ex: parcel elevation compared to BFE)
- Soils data (ex: wetland soils)
- Etc.

Step 3: Calculate the frequency ratio for factor categories

Completed using a GIS-based tool to summarize the flood location counts and area for each factor category.


Example: Age of First Development

- Logic: Identifies areas that were developed under different stormwater and floodplain management standards. Areas developed prior to these practices may be more likely to experience flooding.
- Source: USGS National Water-Quality Assessment (NAWQA) Wall-to-Wall Anthropogenic Land Use Trends (NWALT) 1974-2012 land cover datasets
- Categorization: Split into categories based on time period first developed.

Urban Flooding Susceptibility Index

Age of First Development

	Categories	Percent (%) Study Area	
	Prior to 1974	41.2%	
2	1974-1982	5.4%	
3	1982-1992	3.3%	
4	1992-2002	5.0%	
5	2002-2012	4.6%	
6	Undeveloped/		
	post-2012	40.6%	

Urban Flooding Susceptibility Index

Age of First Development

	Categories	Percent (%) of Study Area	Percent (%) of Flood Locations	Frequency Ratio
	Prior to 1974	41.2%	74.0%	1.8
2	1974-1982	5.4%	4.4%	0.81
3	1982-1992	3.3%	1.9%	0.56
4	1992-2002	5.0%	1.9%	0.38
5	2002-2012	4.6%	1.1%	0.24
6	Undeveloped/ post-2012	40.6%	16.8%	0.41

Step 4: Add frequency ratios for selected factors

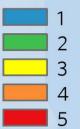
Some factors were tested but revealed poor correlation or noisy FR results; these were excluded from the draft Indexes.

Step 5: Assess accuracy of index

Compare the Validation locations (that were held aside from FR analysis) to the final Index values.

Urban Flooding Susceptibility Index

Urban Analysis


- All areas outside of the 100-yr FEMA floodplain or MWRD 100-yr Inundation area
- Flooding-related factors:
 - Topographic Wetness Index
 - Combined Sewer Service Area
 - Elevation differential between property and nearest FEMA BFE
 - Impervious Cover
 - Age of First Development

Urban Flooding Susceptibility Index

Combined Frequency Ratio* - Urban

Q Miles

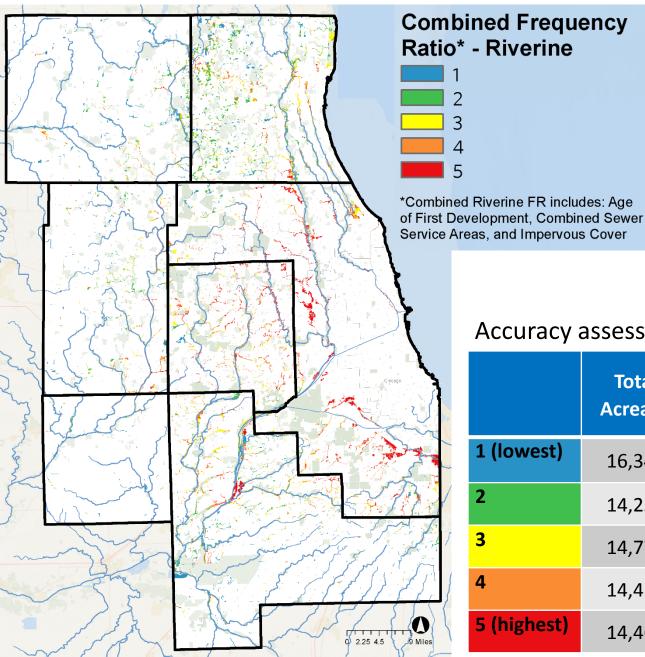
0 2.25 4.5

*Combined Urban FR includes: Age of First Development, BFE, Combined Sewer Service Areas, IC, and TWI

Accuracy assessment using validation data

	Total Acreage	Count of Flooding Locations	Flood Occurrence (%)
1 (lowest)	206,234	33	1.3%
2	244,497	88	3.3%
3	255,748	185	7.0%
4	286,967	457	17.4%
5 (highest)	262,258	1,867	71.0%

Riverine Flooding Susceptibility Index


Riverine Analysis

- All areas **inside** the 100-yr floodplain or the MWRD 100-yr Inundation area.
- Flooding-related factors:
 - Combined Sewer Service Area
 - Impervious Cover
 - Impervious Cover by NHD+ Catchment
 - Age of First Development

Riverine Flooding Susceptibility Index

Accuracy assessment using validation data

	Total Acreage	Count of Flooding Locations	Flood Occurrence (%)
1 (lowest)	16,345	33	1.9%
2	14,251	60	3.5%
3	14,774	196	11.3%
4	14,413	321	18.5%
5 (highest)	14,460	1,129	64.9%

Potential Improvements

- Met with County stormwater leaders, June 29
- Looking for additional Reported Flooding Locations
- Exploring potential new flooding factors:
 - FEMA Flood Zone categories
 - Distance to Trunk/Interceptor Sewers
 - Precipitation variation within the region
 - Other suggestions?
- Exploring potential applications of the index

Purpose: provide an outline for your feedback as we begin to draft the policy recommendations for the strategy paper

Related ON TO 2050 Policy Development:

- Integrating Green Infrastructure
- Climate Resilience
- Water Resources

Five themes

- 1. Identify and communicate flooding risk
- 2. Advancing planning efforts to reduce current and future risk
- 3. Increase resiliency of transportation system
- 4. Invest and maintain grey, green, and natural infrastructure
- 5. Enhance coordination and governance

Key questions

- 1. What are the priorities?
- 2. What is missing?

1. Identify and communicate flooding risk

- Update floodplain mapping
- Update precipitation data and account for future scenarios
- Enhance understanding of urban flooding risk
- Utilize CMAP's regional flooding susceptibility indexes
- Continue to assess vulnerability of populations, critical assets, and transportation network to flooding
- Enhance education efforts for residents

2. Advancing planning efforts to reduce current and future risk

- Continue improving county stormwater management ordinances
- Explore flooding solutions in watershed planning efforts
- Expand floodplain management education and compliance
- Enhance development guidelines for properties at risk due to urban flooding
- Explore strategies for infill development in critical reinvestment areas

3. Increase resiliency of transportation system

- Update infrastructure design standards to reflect changing climate data
- Incorporate green infrastructure into road construction, rehabilitation, and retrofits to capture and infiltrate stormwater
- Develop and enhance operational strategies to maintain performance

4. Invest and maintain grey, green, and natural infrastructure

- Maintain capacity of existing drainage assets through restoration and maintenance
- Expand green and natural solutions
- Connect open space acquisition to watershed scale analysis
- Build better understanding among residents of strategies and resources
- Expand assistance programs for residents
- Expand investment in stormwater solutions

5. Enhance coordination and governance

- Improve coordination across county stormwater agencies
 - Broader modeling efforts for coordination across jurisdictions
 - Improved monitoring programs and data sharing
 - Sharing best practices
- Advocate flood insurance and disaster relief reform

July/August

- Feedback on Draft Regional Flooding Susceptibility Indexes
- Feedback on the Policy Framework
- Please send to Nora by Friday, July 21.
- September Draft Strategy Paper with Flooding Susceptibility Indexes
- October Final Strategy Paper

Comments or Questions

Nora June Beck nbeck@cmap.illinois.gov 312-386-8677

