CMAP GOTO 2040

Cost

Incorporation of Premium Transit Service Attributes in the Chicago Activity-Based Model

CATMUG | April 2013

Project Team

Chicago Metropolitan Agency for Planning (CMAP)

Kermit Wies & Matt Stratton

- Parsons Brinckerhoff (PB)
 - Peter Vovsha, Joel Freedman, Ben Stabler, Binny Paul, Roshan Kumar
- Resource Systems Group (RSG)
 - Maren Outwater, Bill Woodford, & Jeff Frkonja

Sources of Inspiration

□ TCRP H-37

- SANDAG, MAG, SACOG
- Chicago New Starts Model
- Portland Metro
- □ LACMTA/FTA

Model Improvements

Model Component	Phase 1	Phase 2
Advanced "non-labeled" mode choice	Х	Х
Transit access / spatial resolution		Х
Station characteristics	Х	Х
In-vehicle characteristics	Х	Х
Capacity constraints		Х
Crowding effects		Х
Service reliability		Х
Transit frequency / wait time	Х	Х
Fare / cost structures	Х	Х
Individualized transit path choice		Х
Mobility attributes and modality		Х

Non-Labeled Mode Approach

- Refer to actual service characteristics and understand traveler perceptions
- Limit mode & geography-specific constants

Mode Choice Alternatives

Previous (Labeled) >>	Phase 1 (Interim) >>	Phase 2 (Final)
Walk to bus	Walk to conventional transit	Walk to transit
Walk to rail	Walk to premium transit	
Drive to rail	PNR	PNR
Drive to bus	KNR	KNR

Spatial Resolution

- 17K MAZs nested in 2K TAZs
 - All transit trip ends at MAZ geography
- Virtual path building
 - Access time (Python)
 - Station-to-station time (EMME)
 - Access + Station-to-station time (Java)

Transit Stop Types

- 1. Pole
- 2. Bus Shelter
- 3. Bus Plaza
- 4. Rail Station

5. Major Terminal

Transit Stop Parameters

- Additional variables considered
 - Proximity to commercial services
 - Stop/station environment
 - Ease of paying (fare policy & media)
 - Ease of boarding (in combination with vehicle type)
 - Cleanliness
 - Security

Transit Stop Wait Time

Transit Stop Parameters

Station Type	Wait convenience factor	Real-time information factor	Boarding / transfer time, min
1=Pole	2.50	0.9	2.0×2.5
2=Bus Shelter	2.25	0.9	2.0×2.5
3=Bus Plaza	2.00	0.9	3.0×2.5
4=Rail Station	1.75	0.9	3.0×2.5
5=Major Terminal	1.75	0.9	4.0×2.5

Transit Stop Cleanliness

Station type	Base cleanliness	Impact of log of passengers
1=Pole, 2=shelter	0.80	0.00
3=Bus plaza	0.85	-0.01
4=CTA/Metra station	0.90	-0.01
5=Metra terminal	0.95	-0.01

In-Vehicle Parameters

- Additional variables considered
 - Seating comfort
 - Unreliability
 - Crowding
 - Productivity (work, sleep, socialize)
 - Cleanliness
 - On-board amenities
 - Socio-economic compatibility between riders

In-Vehicle Time

On-board cleanliness

In-Vehicle Cleanliness

In-Vehicle Social Environment

- Rarely modeled but...
 - Unpleasant social experiences discourage transit use
 - Secret of commuter rail attractiveness?
- Can be modeled
 - Proportion of different user classes encountered
 - User classes defined by age and HH income
 - Socio-economic friction factor part of perceived IVT multiplier

In-Vehicle Social Environment

In-Vehicle Productivity

21					
	Mode-vehicle type	Fixed IVT productivity bonus			
		User class 1	User class 2	User class 3	
	Local Bus	0.00	0.00	0.00	
	Express Bus	-0.05	-0.05	-0.10	
	Metro	0.00	0.00	0.00	
	Commuter Rail	-0.05	-0.10	-0.20	

In-Vehicle Crowding

Transit Unreliability

Fig. 3. The time components of a rail journey.

- 1. Schedule adherence at boarding stop (extra wait time)
- 2. Impact of congestion (extra IVT)
- 3. Combined lateness at destination versus planned arrival time (similar to auto)

Conclusions

- ABM is a better platform for testing a variety of transit attributes
- ABM required little modification
- Lots of data development
- Final Tasks
 - Finalize measurable transit service attributes
 - Estimate individual path choice preferences
 - Incorporate in operational ABM & transit network procedures

CMAP GO TO 2040

Matt Stratton, mstratton@cmap.illinois.gov Kermit Wies, kwies@cmap.illinois.gov Peter Vovsha, vovsha@pbworld.com Ben Stabler, stabler@pbworld.com Maren Outwater, maren.outwater@rsginc.com