Incorporation of ABM-Derived Transit Demand into a DTA

Mark Hickman
University of Arizona
mhickman@email.arizona.edu

August 24, 2012
Research and Implementation

- Modeling the Urban Continuum in an Integrated Framework: Location Choice, Activity-Travel Behavior, and Dynamic Traffic Patterns
 - Sponsor: FHWA EAR Program
 - PI: Ram Pendyala, ASU
Research and Implementation

- SHRP2 C10-B: Partnership to Develop an Integrated, Advanced Travel Demand Model and a Fine-Grained, Time-Sensitive Network
 - Sponsor: SHRP2, Project C10-B
 - PI: Tom Rossi, Cambridge Systematics

- Modeling Dynamic Transit Travel for San Francisco County
 - Sponsor: SFCTA, University of Arizona
 - PI: Elizabeth Sall / Mark Hickman
Research Contributors

- U of A Transit Research Unit http://transit.arizona.edu/
 - Hyunsoo Noh
 - Alireza Khani
 - Sang Gu Lee
 - Neema Nassir

- Sacramento Area Council of Governments (SHRP2 C10-B)

- San Francisco County Transportation Authority
Dynamic Transit Demand Modeling

Motivating Questions:

- How do we model transit use on tours, not just trips?
 - Constraint on mode choice throughout tour
 - Restrictions on time-of-travel from transit schedule
 - Realistic transit path choice modeling
 - Intermodal path choice / station choice
 - Agent-based simulation

- How do we capture realistic passenger level of service?
 - Schedule-based transit services, by time-of-day
 - Operational dynamics of transit service
 - Allowing for delays, missed transfers, crowding
Software Requirements

Need for a versatile simulation and assignment tool that:

- Captures operational dynamics for transit vehicles
- Connects with Dynamic Traffic Assignment (DTA) software
- Captures individual traveler assignment and network loading in a multi-modal context
- Becomes and remains open-source

Flexible Assignment and Simulation Tool for Transit and Intermodal Passengers
High-level Design Approach

- Let the DTA models do what they do best
 - Assign paths to individual vehicles
 - Fixed-route transit vehicles have a pre-specified path, at a given time
 - Simulate traffic operations for millions of vehicles
 - Simulate transit vehicle movements
 - Vehicles follow traffic flow rules
 - Individual vehicle trips can have modest controls

- Create a separate tool that integrates with DTA
 - Assigns individual passengers to routes, by time-of-day
 - Simulates transit passenger movements based on DTA output
 - Provides skim information for feedback to travel demand models
 - Manages full assignment, transit simulation for intermodal trips
Transit Vehicle Movements in DTA

- Routes are designated by specific paths for transit vehicles
- Transit vehicles leave terminals at designated scheduled times or at specific headways
- Transit vehicles move through the network
 - Mesoscopic flow characteristics while in the traffic stream
 - Pull-outs and/or curbside traffic behavior
 - Specific modeling of hail stops, dwell times:
 - Track number of passengers at or desiring specific stops
 - Use incremental boarding and alighting time model
 \[\text{Dwell time} = \max \{ b_1 B, b_2 A \} \]
- Trajectory output includes transit vehicle departure times at all stops, travel times along route
Transit Assignment

- Transit assignment: Passenger path choice
 - Deterministic model: Shortest or least-cost, time-dependent path
 - Stochastic model: Discrete choice among all paths serving origin and destination at a given time

- Solution method
 - Direct calculation of stop and path choice in uncongested conditions
 - Iterative convergence of an assignment to a user equilibrium, if capacity constraints apply (heavily congested routes)

- Time-dependent path calculations can exploit GTFS data, transfer stop / station hierarchy
Transit and Intermodal Loading

DTA Output
- Auto arrivals at Park-and-Ride Lots
- Transit Vehicle Trajectories

FAST-TrIPs
- Transit Passenger Assignment
- Passenger arrival time, stop, boarding behavior

Passenger Accounting (Simulation)
- Vehicle Pax 1 Pax 3 Pax 6 ...
- Stop Pax 4 Pax 8 Pax 12 ...

Transit Skims and Passenger Measures
- Passenger experience

Transit Vehicle Operating Statistics
- Transit vehicle movements

Feedback to next iteration
Transit Simulation / Passenger Loading

- Passenger “loading” to queue at stops
 - Origin departure time + bike or walk access time
 - Arrival time at stop for auto access, transit transfers
 - Priority treatment based on arrival time

- Vehicle “loading” at stops
 - “Hail stop” operations
 - Passengers “alight” from vehicle: transfer to another stop queue, or egress (bike, walk, auto) to destination
 - Passengers “board” from stop to vehicle, according to individual assignment (in priority order)
 - Transit vehicle held until max of \{ dwell time, holding time \}

- Passengers denied boarding / missing a vehicle are re-assigned
Iterative Process through Dwell Times

1. ABM Output: Trip and Tour Rosters
2. Google GTFS and transit line information
3. Transit Route Network and Stops
4. Route Schedule (Stop-Times)
5. FAST-TrIPs Transit and Intermodal Assignment and Simulation
6. Dwell Times updated by passenger loading from latest transit vehicle trajectories
7. AUTO Access trips
8. AUTO Skims for O,D,t
9. Transit Vehicle Trajectories
10. DTA Assignment and Simulation
Transit Skims and Operating Statistics

- Transit operating characteristics
 - Transit vehicle trip travel times, by route segment (DTA)
 - Transit vehicle loads, by route segment (FAST-TrIPs)

- Passenger experience
 - Passenger travel times, costs from experienced paths
 - Passengers denied boarding due to capacity constraints
 - Passengers missing connections on scheduled service
Experience with FAST-TrIPs

- FHWA EARP: Modeling the Urban Continuum
 - ABM: OpenAMOS
 - DTA: MALTA (Mesoscopic Assignment and Loading of Traffic Activities)
 - ABM and DTA simulate the day in parallel, then iterate
 - Phase I case study (Phoenix / MAG) uses auto mode only

- SHRP2 C10-B
 - ABM: DaySim
 - DTA Model: DynusT (Dynamic Urban Systems in Transportation)
 - ABM and DTA simulate the day in series, then iterate
 - Entering transit model calibration and scenario modeling with SACOG
Experience with FAST-TrIPs

- **SFCTA: Modeling Dynamic Transit Travel for San Francisco County**
 - ABM: SF-CHAMP
 - DTA: Dynameq
 - ABM and DTA simulate the day in series, then iterate
 - SFCTA has a stochastic transit path choice model

- **Case study:**
 - Develop network interface with Dynameq
 - Generate transit network and schedule using GTFS
 - Estimate time-of-day use from automated passenger count data
 - Apply deterministic and stochastic path choice models
 - Validate using passenger boarding, alighting, loading
Travel by Time of Day from APC data
SFCTA Stochastic Path Choice Model Weights

Coefficient values relative to in-vehicle time = 1.0

<table>
<thead>
<tr>
<th>Mode</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Wait</td>
<td>2.23</td>
</tr>
<tr>
<td>Transit Access Walk</td>
<td>1.83</td>
</tr>
<tr>
<td>Transit Egress Walk</td>
<td>5.39</td>
</tr>
<tr>
<td>Transfer Walk</td>
<td>7.45</td>
</tr>
<tr>
<td>Bike (mode)</td>
<td>2.56</td>
</tr>
<tr>
<td>Walk (mode)</td>
<td>2.70</td>
</tr>
</tbody>
</table>
FAST-TrIPs and DTA Results: PM Peak Period

<table>
<thead>
<tr>
<th></th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Global Iterations</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Dwell Time Gap (%)</td>
<td>61</td>
<td>64</td>
</tr>
<tr>
<td># of FAST-TrIPs Iterations</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>CPU Time (min)</td>
<td>92</td>
<td>203</td>
</tr>
<tr>
<td>Transit Demand (trips)</td>
<td>85,665</td>
<td>85,665</td>
</tr>
<tr>
<td>Capacity Violation (%)</td>
<td>1.67</td>
<td>1.72</td>
</tr>
<tr>
<td>Avg Travel Time (min)</td>
<td>25.31</td>
<td>25.94</td>
</tr>
<tr>
<td>Avg # of Transfers</td>
<td>0.71</td>
<td>0.72</td>
</tr>
<tr>
<td>Avg Dwell Time (sec)</td>
<td>8.1</td>
<td>8.8</td>
</tr>
</tbody>
</table>
Transit Capacity Violations
FAST-TrIPs Load Profile Results

- Route 38 outbound, PM peak average load
Load Profile Results

- Route 38 outbound, 17:47 vehicle trip
Convergence Measures (Dwell Time Gap)
On-going Research

- SHRP2 C10-B
 - Model calibration for SACOG
 - Scenario development using Line files -> GTFS
 - Formal open-source release

- SFCTA
 - Further model validation
 - Feedback with DTA (Dynameq) and with ABM (SF-CHAMP)
 - Experiment with service reliability

- EAR Program
 - Possible Phase II application with transit