A Working Demonstration of a Mesoscale Freight Model for the Chicago Region

Overview

- Objective of Study
- Evolution of Freight Modeling
- Modeling Steps
- Results

Objective An Innovative New Freight Model

- Regional freight questions (examples)
 - » How do fuel prices impact mode share?
 - » Would a new airport relieve congestion at existing airports?
 - » Would a new intermodal terminal reduce truck drayage?
 - » How many trucks would use new truck-only lanes?

The Evolution of Freight Models

Supply **Truck Trip** Truck Disaggregate **O-D Matrix** Chain and **Factor** Generation Commodity **Touring Estimation Auto Trips** Logistics Rates (QRFM) Flows Models Models

The CMAP Approach to Advanced Freight Modeling

Macroscale Model

Position of the Chicago region in local, national, and global trading arenas

Mesoscale Model

 Goods movement to/from individual businesses in the Chicago region

Microscale Model

Microsimulation of goods movements

Recent Developments in Advanced Freight Modeling

CMAP's Innovative Approach to Freight Forecasting

Agent-Based

Driven by Business Economics

Project Specifications Fully Functioning Software

```
🅰 SAS - [Meso 29_Annotated.sas]
File Edit View Tools Run Solutions Window Help
                                   Enumerate individual firms
 🗆 data
           AgentsN6;
   set
           CBPZONEdata :
           naics6 CBPZONE FAFZONEa;
           e[8] ;
   array
           i=1 to 8 ;
           esizecat=i;
           numbus=e[i];
   output:
   end:
   drop
           i e1--e8;
   run:
 ∃data
           AgentsN6;
           AgentsN6;
           numbus>0;
   where
   run:
 ∃data
           AgentsN6;
   set
           AgentsN6;
           naics6 CBPZONE esizecat;
   do i=1 to NumBus ;
   numero = i:
Output - (Untitled) | Dog - (Untitled)
                                MasterProc2.sas
```


Project Specifications (continued) Meaningful for Analysis of Chicago Region

Project Specifications (continued) Evaluate Transportation Decisions (1)

Rail Carload, Intermodal (IMX)

Water

Rail-Truck Intermodal

Air

Project Specifications (continued) Evaluate Transportation Decisions (2)

Truck with Container

FTL: Full Truckload

LTL: Less-than-Truckload

Logistics Handling → Transloading, Distribution

Mesoscale Model Overview

- 1) Firm Synthesis
- 2 Supplier Selection
- 3 Apportionment of Commodity Flows
- 4) Path Selection
- 5 Prepare for Assignment

Generate Individual Firms

- * Characterize firms Buyer? Supplier? Both?
- * Identify top commodities traded
- * Wholesale firms simulate type of goods traded

Firm Location Model

Supplier Selection

- Identify potential trading partners (FAME)
 - » Utilizes information from Input-Output Make and Use Table (Bureau of Economic Analysis)
 - » Candidate partners must be part of Macroscale commodity flow table
- Supply chain formation
 - » Each buyer selects a supplier
 - » Model with asserted parameters (based on FAME formulation)

	Coefficient							
Consumer Business Size (Number of Employees)	Producer Business Size (Number of Employees)			Great Circle Distance Between Consumer and Producer (Miles)				
	1 to 99	100 to 499	500+	Over 1,509	596 to 1,509	150 to 595	1 to 149	0 (Intracounty)
1 to 99	0.2	0.2	0.4	-0.4	-0.3	-0.2	0	0.1
100 to 499	0.2	0.6	0.6	-0.2	-0.1	-0.05	0	0.1
500+	0.4	0.6	0.6	-0.1	-0.05	0	0	0.1

Flow Apportionment

- Input aggregate commodity flows
- Disaggregate flows among supplier-buyer pairs
 - » Based on buyer firm size (number of employees)
 - » Tons of goods consumed per buyer firm employee by industry (derived from Make-Use table)
- → Output annual tons traded between supplier and buyer

Path Selection

- Inputs
 - » Path information from model network
 - » Annual transport and logistics cost formulation
 - Ben-Akiva and de Jong (ADA)
 - Shipment frequency
 - Travel time and reliability needs
 - Loss and damage
- Each supply chain selects a transport and logistics path for its shipping needs

Prepare for Assignment

- Key output freight vehicle trip table by:
 - » Commodity
 - » Shipment size
 - » Shipment frequency
 - » Mode (truck, rail, air, water) and submode (TL, container, etc.)
 - » Origin TAZ, destination TAZ, and intermediate logistics stop nodes

SUPPLY CHAIN EXAMPLE

Input Flows from Macroscale Model

Generate Firms

Form Supply Chains

Apportion Flows Among Supply Chains

Path Selection Overview

Evaluation of Transport and Logistics Decisions:Path Enumeration

Example:

Port of Los Angeles to Chicago

Shipment Size: 140 tons in seven 40' containers

Option B: Treurscholaltheibritrainskeatchealn, taned dis Calmica go area, then truck

Evaluation of Transport and Logistics Decisions:Path Selection

Option A:Truck hauls container entire distance

Option B:

Transload then Truckload

Option C:

Intermodal rail to intermodal yard in Chicago area, then Truck

EXAMPLE RESULTS

Example Results Percentage of Goods by Path Type

Example Results: Rail – Air – Water Ports Number of Shipments

Source: CMAP Mesoscale Model (2011).

Example Results: Rail – Air – Water Ports Less than Truckload Drayage Trucks

Source: CMAP Mesoscale Model (2011).

Example Results: Rail – Air – Water Ports Full Truckload Drayage Trucks

Source: CMAP Mesoscale Model (2011).

Summary and Next Steps

- The CMAP Mesoscale Model
 - » Leading edge of freight modeling tools
 - » Agent-based approach to modeling freight movements
 - » Driven by economic principles
 - » Generate insights into broad range of questions
- Model enhancements
 - » Data collection
 - Stated preference surveys of businesses
 - Path cost data
 - » Model calibration and validation

QUESTIONS?