### CMAP Advanced Travel Model Cadre

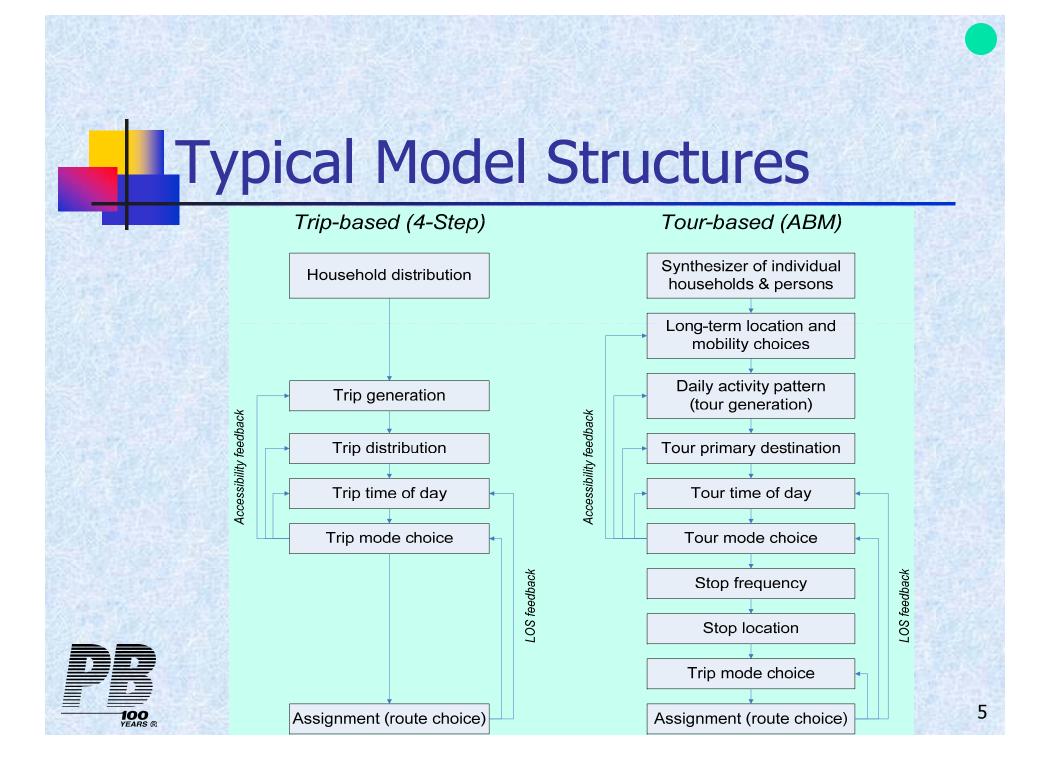
#### Implementation & Computing Environment for Advanced Travel Model

Peter Vovsha, Parsons Brinckerhoff



### 1. Model Features, Algorithms, and Types of Calculations




### 1.1. Computational Specifics of Advanced ABM Compared to 4-Step



# 3 Main Features of ABM

- Individual microsimulation:
  - Principally different flow of calculations
  - More parsimonious compared to aggregate
- Tour-based:
  - Adds new dimensions and constraints, specifically for trip distribution and mode choice
- Activity-based:
  - Adds new dimensions and constraints, specifically w.r.t temporal dimension





# 1.2. Essence and Advantages of Individual Microsimulation



### **Advantages of Microsimulation**

- Savings in calculation and storage of multidimensional probability arrays
- Unlimited segmentation of population and travel
- Behaviorally-realistic decision chains and individual time-space constraints
- Realistic variation of individual parameters (like VOT)
- Explicitly modeling variability of travel demand



### How Does It Really Work?

- Complexity, data needs, and revolutionary character of ABM are frequently overstated
- In reality, the model structure follows a limited number of simple principles and the model outcome looks like a large HH survey
- Innovative technical features easily understood by 4-step modelers



#### Zonal Socio-Economic Data

| TAZ | HHs | HH size |  |
|-----|-----|---------|--|
| 1   | 3   | 3.3     |  |
| 2   | 200 | 2.4     |  |
|     |     |         |  |



#### List of synthetic households

| TAZ | HHs | HH size |  |
|-----|-----|---------|--|
| 1   | 3   | 3.3     |  |



#### List of synthetic households

| TAZ | НН | HH size |  |
|-----|----|---------|--|
|     | 1  | 3       |  |
| 1   | 2  | 3       |  |
|     | 3  | 4       |  |



#### List of persons by type

| TAZ HH |   | HH size |  |  |
|--------|---|---------|--|--|
| 1      | 1 | 3       |  |  |

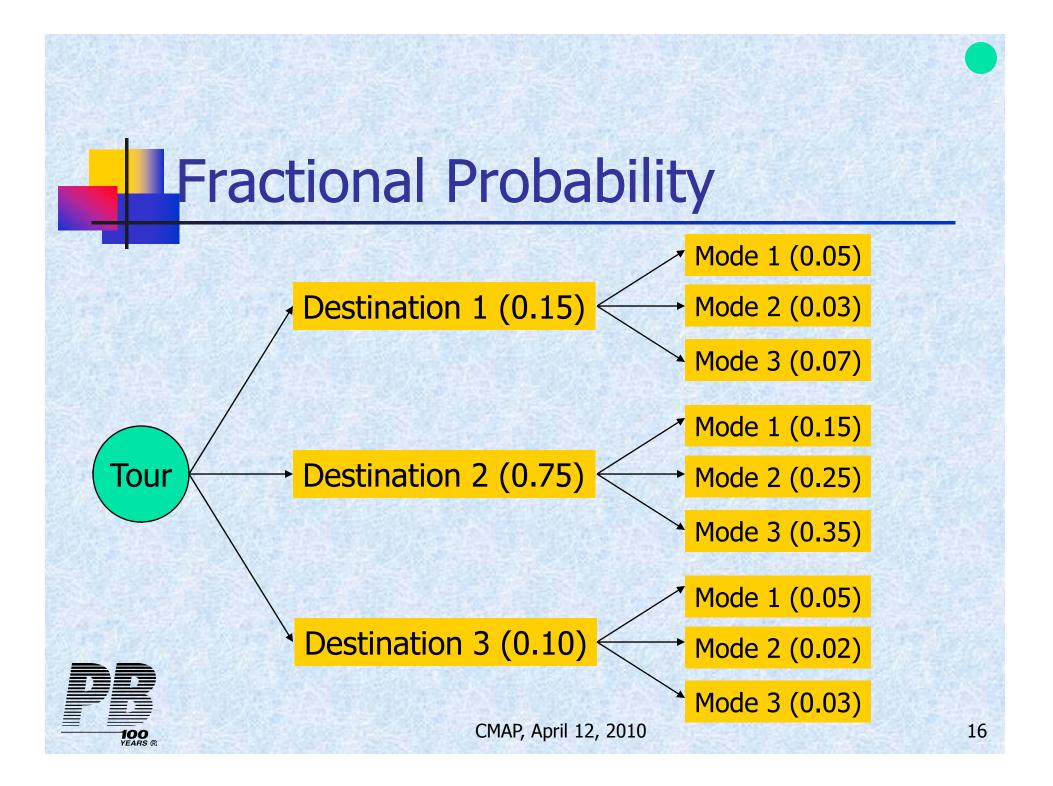


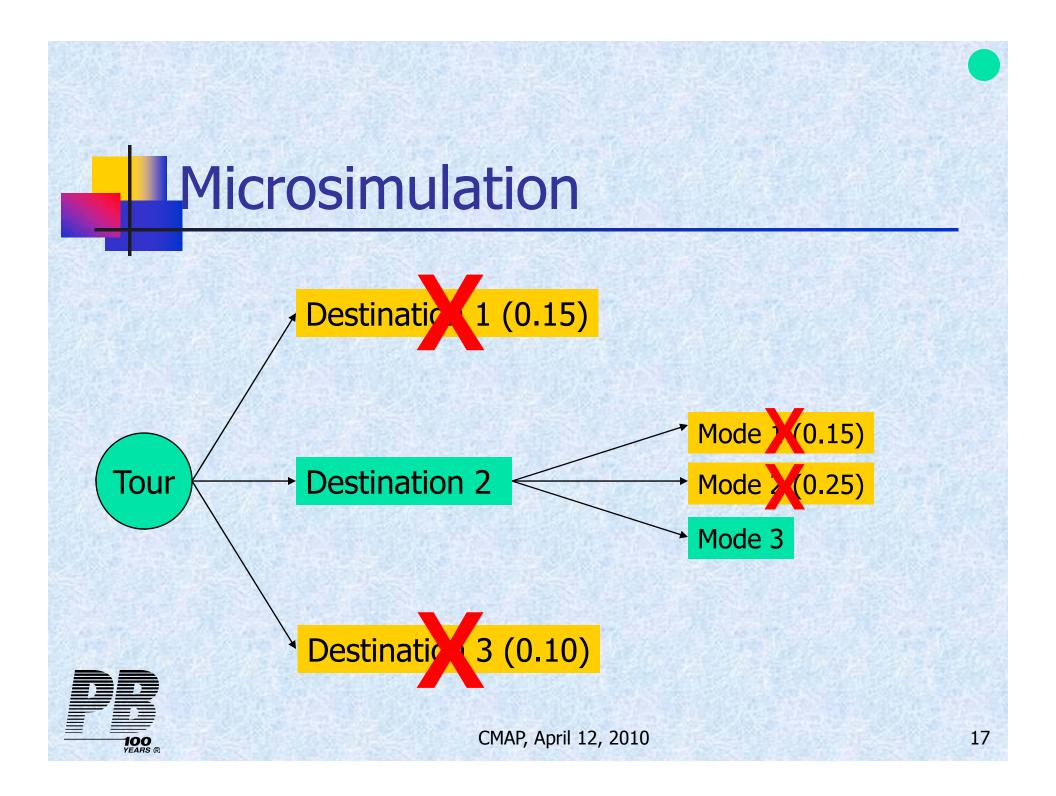
#### List of persons by type

| TAZ | НН | Person |  |
|-----|----|--------|--|
|     |    | Worker |  |
| 1   | 1  | Non-w  |  |
|     |    | Child  |  |

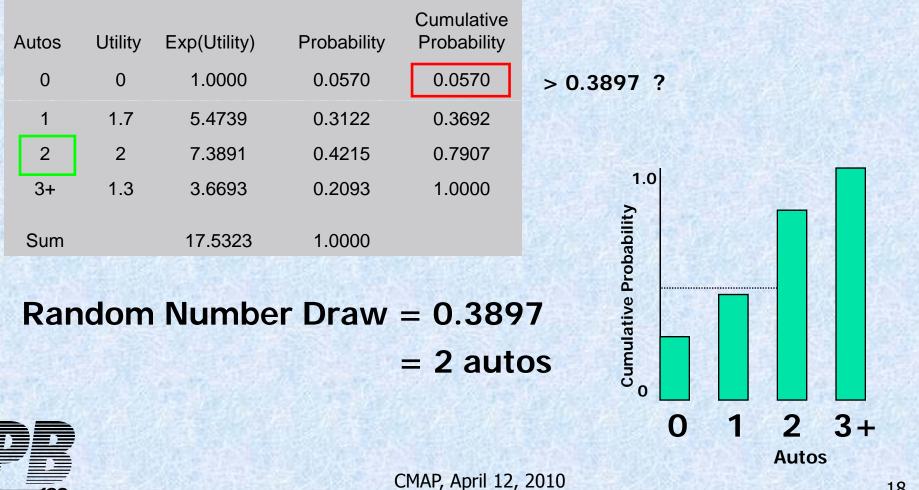


#### List of tours by purpose


| TAZ | НН | Person | Tour |
|-----|----|--------|------|
|     |    |        | Work |
| 1   | 1  | Worker | Shop |
|     |    |        |      |

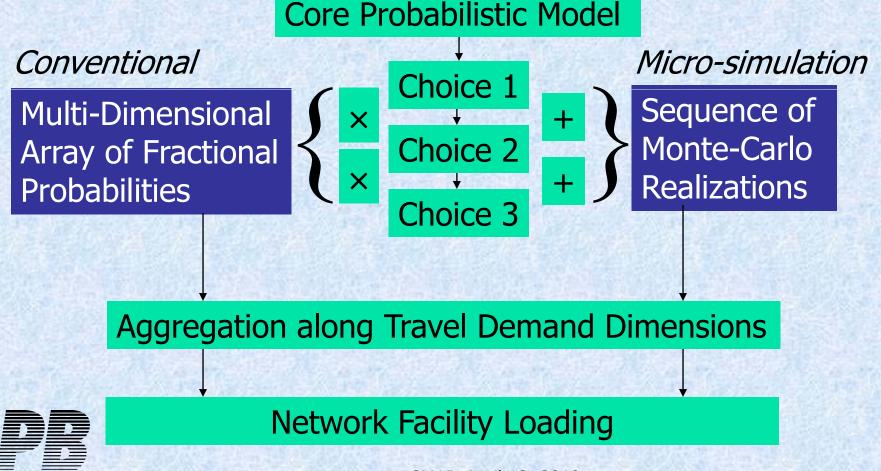



#### Mode & destination for each tour

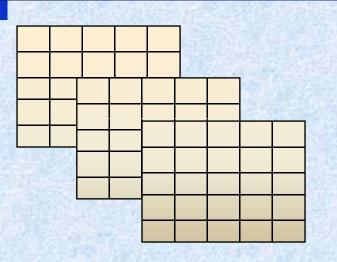

|          | TAZ | НН | Person     | Tour | Dest       | Mode       |
|----------|-----|----|------------|------|------------|------------|
| SOULANS! |     |    | Morkor     | Work | TAZ 10     | SOV        |
|          | 1   | 1  | Worker     | Shop | TAZ 20     | WT         |
|          |     |    | Kalage and |      | Standard . | THE LOUBLE |








#### Monte Carlo Simulation Example – Car Ownership




YEARS (R





#### **Trip-Based Models**



- One set of calculations per cell
- Each market segment = new set of trip tables
- More markets = more calculations

100

#### **Micro-simulation**

| HID | PID | AUT | INC | WRK | GEN | AGE | EMP |  |
|-----|-----|-----|-----|-----|-----|-----|-----|--|
| 1   | 1   | 1   | 3   | 1   | 0   | 24  | 1   |  |
| 1   | 2   | 1   | 3   | 0   | 1   | 23  | 0   |  |
| 1   | 3   | 1   | 3   | 0   | 1   | 3   | 0   |  |
| 2   | 1   | 2   | 4   | 2   | 0   | 32  | 1   |  |
| 2   | 2   | 2   | 4   | 2   | 1   | 34  | 1   |  |
| 3   | 1   | 3   | 2   | 2   | 0   | 49  | 1   |  |
| 3   | 2   | 3   | 2   | 2   | 1   | 47  | 1   |  |
| 3   | 3   | 3   | 2   | 2   | 1   | 15  | 0   |  |
| 3   | 4   | 3   | 2   | 2   | 0   | 12  | 1   |  |
|     |     |     |     |     |     |     |     |  |

- One set of calculations per agent
- Each market segment = new column
- More markets = no additional calculations

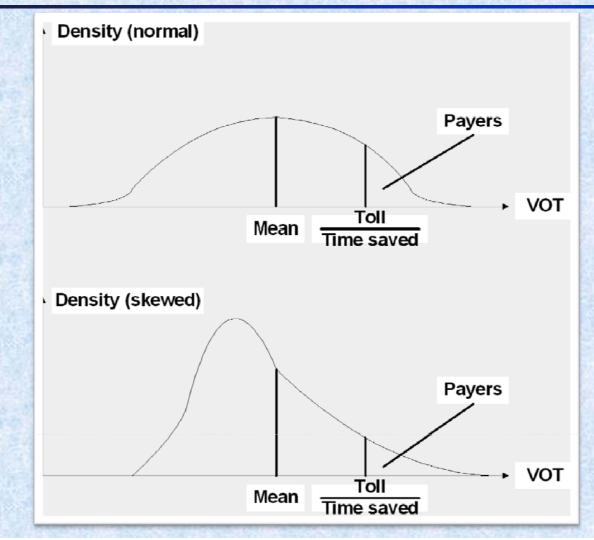
# Person Types

| NUMBER | PERSON-TYPE         | AGE     | WORK STATUS | SCHOOL<br>STATUS |
|--------|---------------------|---------|-------------|------------------|
| 1      | Full-time worker    | 18+     | Full-time   | None             |
| 2      | Part-time worker    | 18+     | Part-time   | None             |
| 3      | Non-working adult   | 18 – 64 | Unemployed  | None             |
| 4      | Non-working senior  | 65+     | Unemployed  | None             |
| 5      | College student     | 18+     | Any         | College +        |
| 6      | Driving age student | 16-17   | Any         | Pre-college      |
| 7      | Non-driving student | 6 – 16  | None        | Pre-college      |
| 8      | Pre-school          | 0-5     | None        | None             |



# Activity Types

|       | TYPE | PURPOSE                  | DESCRIPTION                                                                     | CLASSIFICATION  | ELIGIBILITY                       |
|-------|------|--------------------------|---------------------------------------------------------------------------------|-----------------|-----------------------------------|
|       | 1    | Work                     | Working at regular workplace<br>or work-related activities<br>outside the home. | Mandatory       | Workers and students              |
|       | 2    | University               | College +                                                                       | Mandatory       | Age 18+                           |
|       | 3    | High School              | Grades 9-12                                                                     | Mandatory       | Age 14-17                         |
|       | 4    | Grade School             | Grades K-8                                                                      | Mandatory       | Age 5-13                          |
|       | 5    | Escorting                | Pick-up/drop-off passengers (auto trips only).                                  | Maintenance     | Age 16+                           |
|       | 6    | Shopping                 | Shopping away from home.                                                        | Maintenance     | 5+ (if joint travel, all persons) |
|       | 7    | Other Maintenance        | Personal business/services,<br>and medical appointments.                        | Maintenance     | 5+ (if joint travel, all persons) |
|       | 8    | Social/Recreational      | Recreation, visiting friends/family.                                            | Discretionary   | 5+ (if joint travel, all persons) |
|       | 9    | Eat Out                  | Eating outside of home.                                                         | Discretionary   | 5+ (if joint travel, all persons) |
| 100   | 10   | Other Discretionary      | Volunteer work, religious<br>activities.                                        | Discretionary   | 5+ (if joint travel, all persons) |
| YEARS | R    | The second second second |                                                                                 | ALL STORE STORE | Chine State Chine State           |


### **Individual Parameter Variation**

- IPV technique was successfully used for probabilistic VOT (SF) and license plate rationing (NY)
- IPV can be used in a similar way for all types of payment media and individual discounts
- The alternative to IPV is an explicit model segmentation that quickly runs into infeasible number of segments
- IPV requires a microsimulation framework; it can also be applied for network simulations



### **Probabilistic VOT**

100 YEARS R



24

# **Probabilistic VOT**

- Time and cost coefficients in the mode utility expressions are not fixed for each segment but drawn from the (parameterized) distribution
- Software for choice model estimation (mixed logit) is available
- Implemented and tested in the SFCTA AB model



### **VOT Distribution**



### What is License Plate Rationing?

|                |                                                    | Mon | Tues           | Wed  | Thur           | Fri          |
|----------------|----------------------------------------------------|-----|----------------|------|----------------|--------------|
|                | XYZ 391                                            | ×   | -              | -    | >              | >            |
|                | ABC 123                                            | >   | ×              | -    | >              | -            |
|                | IS MICHIGAN . 71<br>ABI2345<br>GREAT LAKE<br>STATE | >   | >              | ×    | >              | >            |
|                | AB-0077<br>.COLORADO.                              | 1   | 1              | 1    | ×              | -            |
|                | PL 409                                             | 1   | -              | 1    | -              | $\mathbf{X}$ |
| 100<br>YEARS ® | C. C. Standard                                     | C   | MAP, April 12, | 2010 | and the second | 7            |

### Option: License Plate Rationing

- Policy: 20% (or 10%) No-drive to CBD vehicle ban based on last digit of license
- Impact on Travel Choices
  - Destination Choice No
  - Mode Choice and Stop Location Yes
- Account for opportunities to reduce impact of ban:
  - Changing the Day of Trip
  - Vehicle availability within Household
- Household Auto availability model
  - Vehicle available for Destinations to CPZ
  - Car Sufficiency revised # of Autos minus of Workers



### License Plate Rationing – 20% Auto Availability Model

| Ę          |     |      |       |             | Rand | 'om #'s | for tag | gging |
|------------|-----|------|-------|-------------|------|---------|---------|-------|
|            | HH# | Wkrs | Autos | Car<br>Suff | a1   | a2      | a3      | a4    |
|            | 1   | 2    | 3     | 1           |      |         |         |       |
| A STATE OF | 2   | 1    | 1     | 0           |      |         |         |       |
|            | 3   | 1    | 2     | 1           |      |         |         |       |
| Contract   | 4   | 1    | 1     | 0           |      |         |         |       |
|            | 5   | 2    | 4     | 2           |      |         |         |       |
|            | 6   | 2    | 2     | 0           |      |         |         |       |



### License Plate Rationing Car Availability by Destination

| Not-CPZ Random #'s for tagging To CPZ                                                    |      |       |             |       |       |       |              |       |             |           |
|------------------------------------------------------------------------------------------|------|-------|-------------|-------|-------|-------|--------------|-------|-------------|-----------|
| HH#                                                                                      | Wkrs | Autos | Car<br>Suff | a1    | a2    | a3    | a4           | Autos | Car<br>Suff |           |
| 1                                                                                        | 2    | 3     | 1           | 0.914 | 0.190 | 0.245 |              | 2     | 0           |           |
| 2                                                                                        | 1    | 1     | 0           | 0.988 |       |       |              | 1     | 1           | FLOOR NO. |
| 3                                                                                        | 1    | 2     | 1           | 0.246 | 0.487 |       | Sale -       | 2     | 1           |           |
| 4                                                                                        | 1    | 1     | 0           | 0.121 |       |       |              | 0     | -1          |           |
| 5                                                                                        | 2    | 4     | 2           | 0.375 | 0.878 | 0.165 | 0.341        | 3     | 1           |           |
| 6                                                                                        | 2    | 2     | 0           | 0.080 | 0.660 |       | and a second | 1     | -1          |           |
| For Tours Not to Restricted Area For Tours to Restricted Area<br>CMAP, April 12, 2010 30 |      |       |             |       |       |       |              |       |             |           |

# Payment Type / Discounts

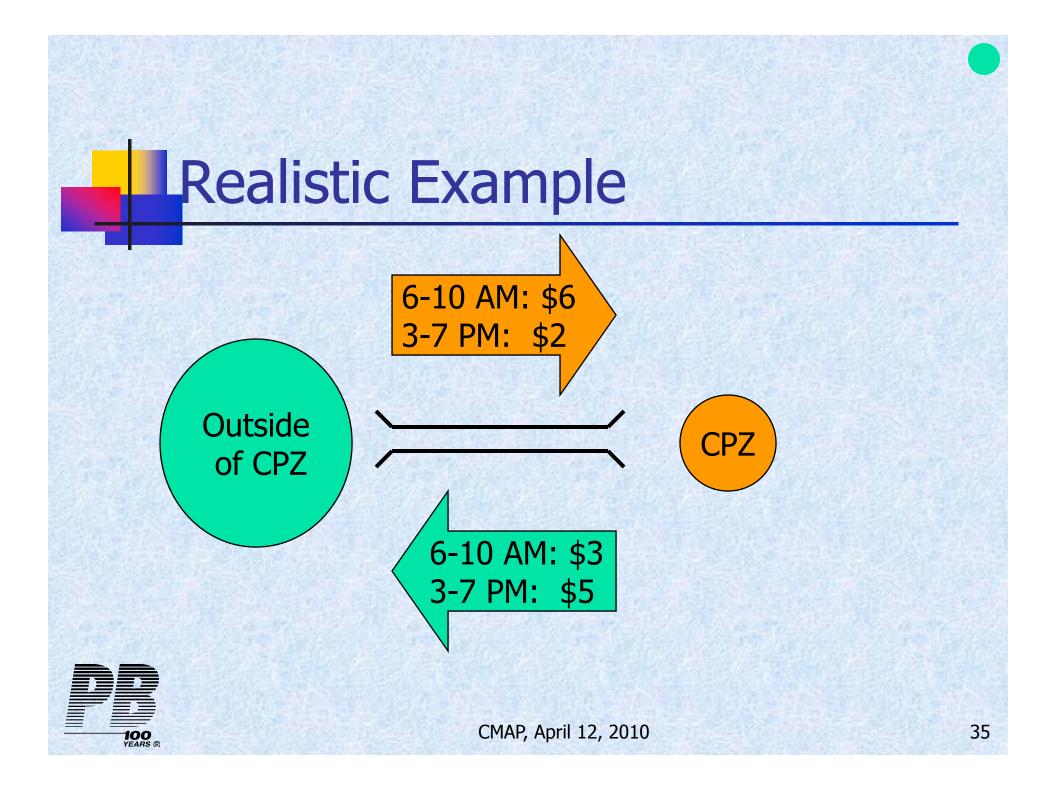
- Toll/discount differentiation by payment type:
  - Cash
  - Pass
  - ETC/transponder
- Individual discounts:
  - Area residents
  - Credit-based forms/low-income subsidies
  - Reimbursement of tolls by the employer
  - Free parking provided by the employer



### 1.3. Tour-Based Techniques and Challenges



# Taking Advantage of


- Tour-based structure:
  - Accounting for tolls in both directions by TOD periods
- Microsimulation of individuals:
  - Probabilistic VOT
  - Payment type / discounts
- Entire-day individual activity pattern:
  - Daily area pricing forms



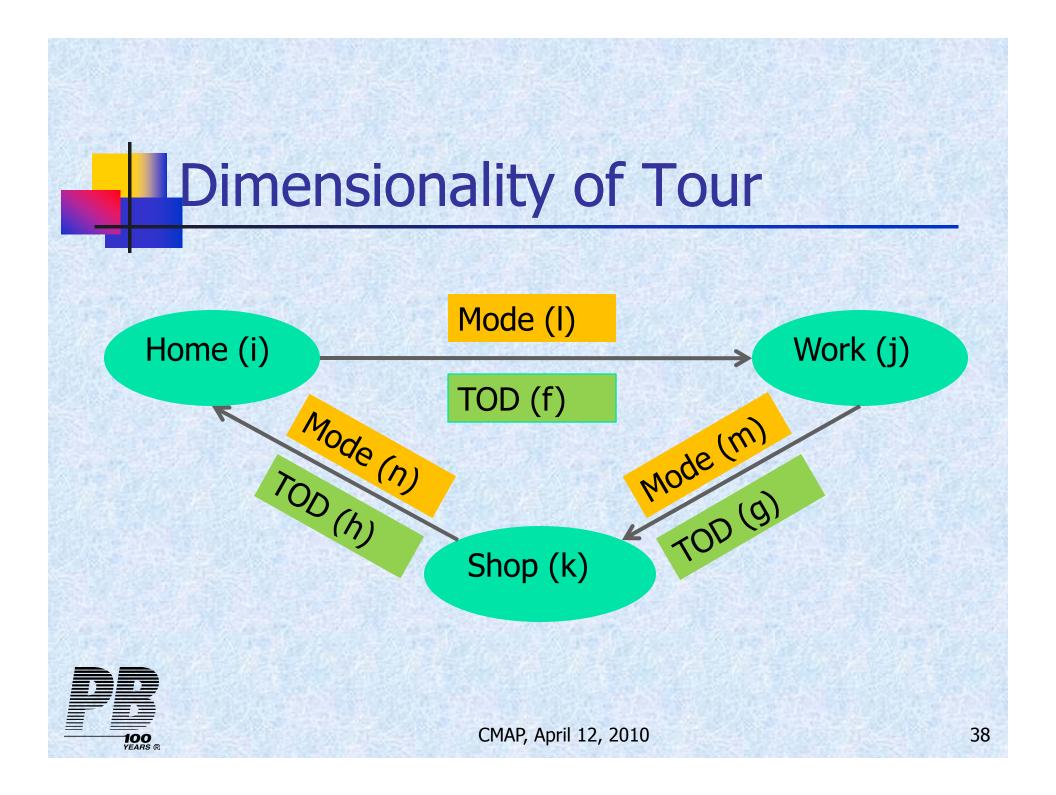
# Accounting for Tolls in Both Directions by TOD

- Scenarios to model:
  - TOD-specific tolls differentiated by directions
- Required model sensitivities:
  - Travelers have to see both tolls that affect:
    - Route choice (independent by directions)
    - Mode choice
    - TOD choice
    - Destination choice





### True Tolls Paid by Commuters


| Outbound time    | Inbound time     | Toll, \$ |
|------------------|------------------|----------|
| Earlier than 6AM | Earlier than 6AM |          |
| Earlier than 6AM | 6-10AM (\$3)     | 3        |
| Earlier than 6AM | 10AM-3PM         |          |
| Earlier than 6AM | 3-7PM (\$5)      | 5        |
| Earlier than 6AM | Later then 7PM   |          |
| 6-10AM (\$6)     | 6-10AM (\$3)     | 9        |
| 6-10AM (\$6)     | 10AM-3PM         | 6        |
| 6-10AM (\$6)     | 3-7PM (\$5)      | 11       |
| 6-10AM (\$6)     | Later then 7PM   | 6        |
| 10AM-3PM         | 10AM-3PM         |          |
| 10AM-3PM         | 3-7PM (\$5)      | 5        |
| 10AM-3PM         | Later then 7PM   |          |
| 3-7PM (\$2)      | 3-7PM (\$5)      | 7        |
| 3-7PM (\$2)      | Later then 7PM   | 2        |
| Later then 7PM   | Later then 7PM   |          |



## Modeling True Tolls & LOS

- With 4-step model:
  - Impossible to ensure any reasonable level of consistency across trip distribution, mode choice, and time of day choice
- With tour-based model:
  - It is still difficult to ensure a full consistency, but a much better job can be done





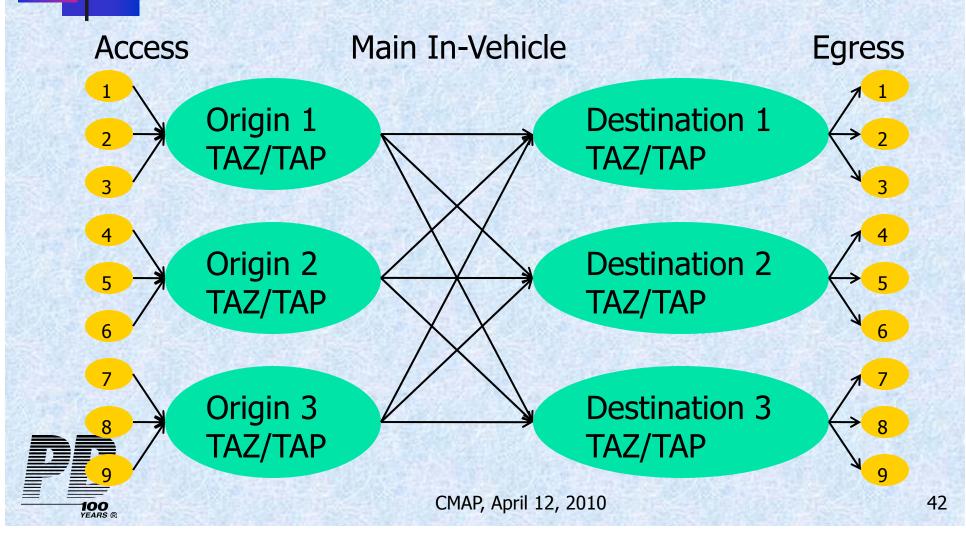
## **Treatment of Space**

- Level of spatial resolution:
  - TAZ (3,000-4,000)
  - MGRA (20,000-30,000)
  - Parcel (1,000,000)
- Calculation of LOS:
  - Predetermined Origin and Destination catchment areas
  - On-fly path building

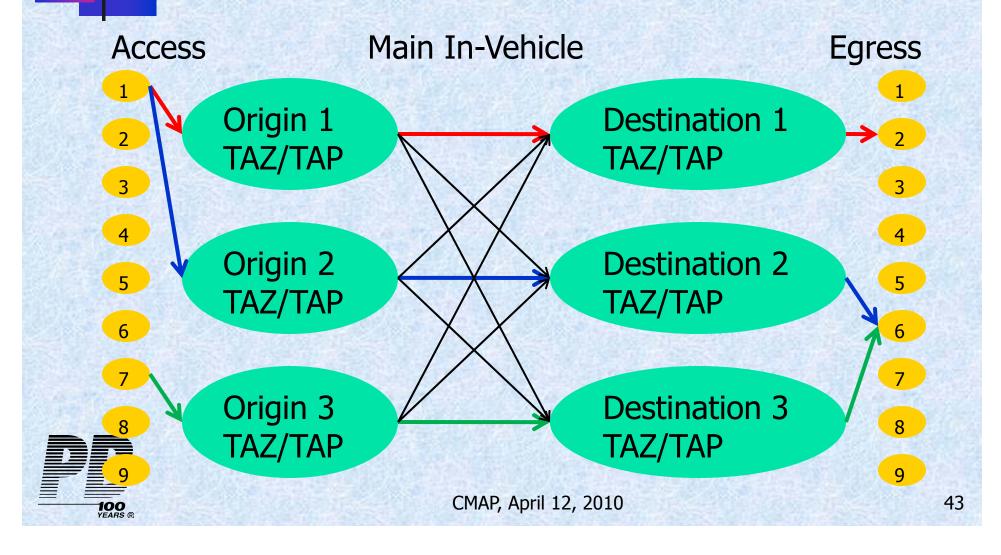


### **Treatment of Time**

- Levels of temporal resolution:
  - TOD periods (4-5)
  - Hour/half-hour (20-40)
  - Fine grain / continuous
- Calculation of LOS:
  - SUE limits to 1 hour
  - Integration with DTA is the long-term avenue

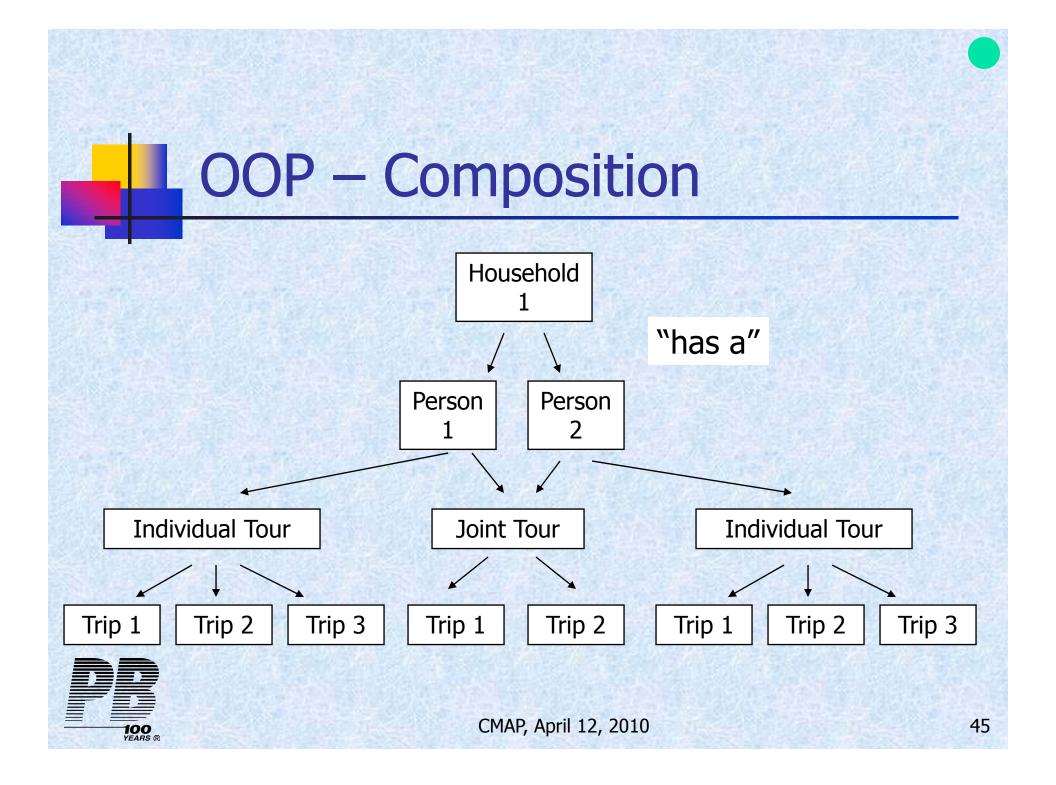



# Number of Tour Alternatives


- Even with the crudest resolution:
  - Spatial i×j×k=4,000×4,000×4,000
  - Temporal f×g×h=20×19×18/6=1,140
  - Mode combinations 10×10×10=1,000
  - Combined is practically infinite
- Every alternative utility function requires random access to a large number of LOS matrices








# Fine-Grain LOS (2=on Fly)



# 1.4. Internal Database and Types of Objects





#### 1.5. Transportation Network Procedures



### Transportation Network Procedures

- ABM like any demand model is integrated with network assignment and skimming procedures
- 2 options:
  - Conventional STA (UE) short term
  - Advanced DTA w/microsimulation long term but getting more and more realistic
- All major vendors provide both options:
  - INRO (EMME & Dynameq)
  - Caliper (TransCAD & TransModeller)
  - PTV (Visum & Vissim)
  - Citilabs (Cube Voyager & Avenue)



#### Different Software Development Paths

Advanced demand ABMs cannot be implemented using script languages of transportation packages

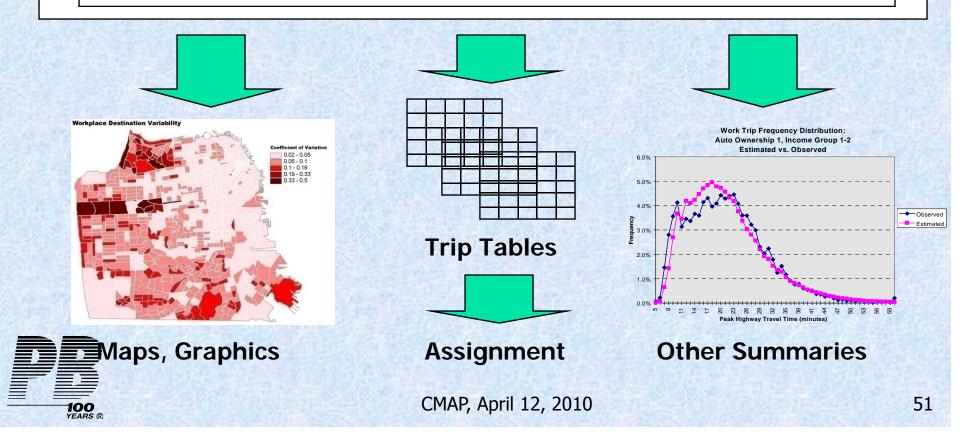
- Software is developed by consultants using general-purpose program languages (C, Java)
- Some vendors like Citilabs are trying to penetrate the market
- Contrary to that, network simulation software has to by bought from the vendor:
  - Commercial packages
  - University Labs (DynaSmart, Dynus-t)



## What is Different?

- DTA:
  - Sophisticated but generic algorithm
  - Relatively small number of parameters with recommended default values; no estimation for route choice
  - Calibration relates to network input characteristics (capacity, speed) and demand
- ABM:
  - Less sophisticated but specific algorithm
  - Large number of behavioral choice sub-models and parameters to estimate
  - Calibration relates to model parameters




#### 1.6. Understanding and Managing Microsimulation Model Output



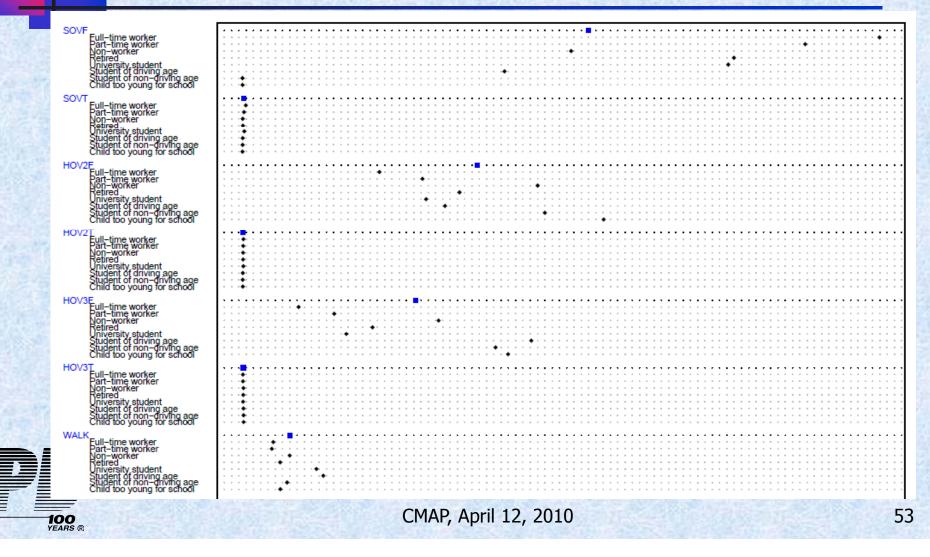
#### **Tour-Based Model Output**

#### Household Data, Person Data, Tour/Trip List

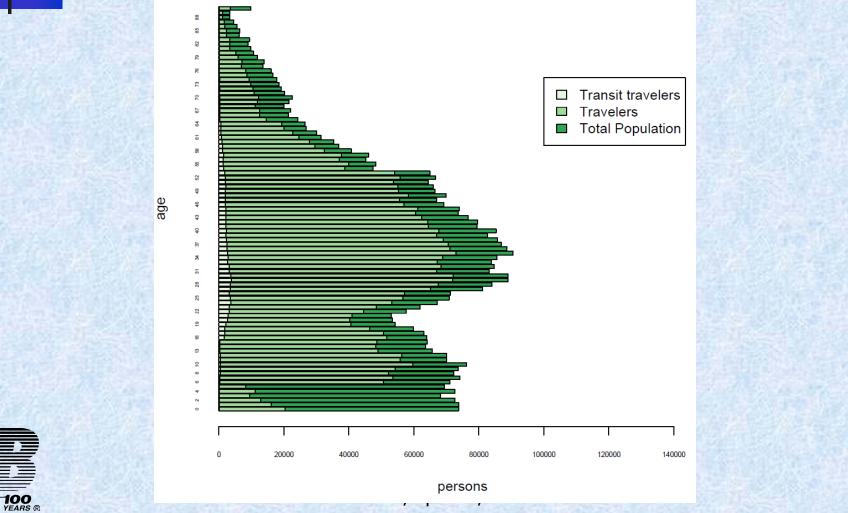
| HID | PID | TID | PUR | MOD | SB | SA | OTAZ | DTAZ | S1TAZ | S2TAZ | TLOR | TLDS |
|-----|-----|-----|-----|-----|----|----|------|------|-------|-------|------|------|
| 1   | 1   | 1   | 2   | 1   | 0  | 1  | 943  | 987  | 0     | 964   | 1    | 3    |
| 1   | 1   | 2   | 1   | 2   | 1  | 0  | 943  | 731  | 856   | 0     | 3    | 3    |
| 1   | 2   | 1   | 4   | 1   | 0  | 0  | 943  | 952  | 0     | 0     | 1    | 2    |
| 1   | 3   | 1   | 2   | 4   | 1  | 1  | 943  | 565  | 698   | 982   | 1    | 2    |



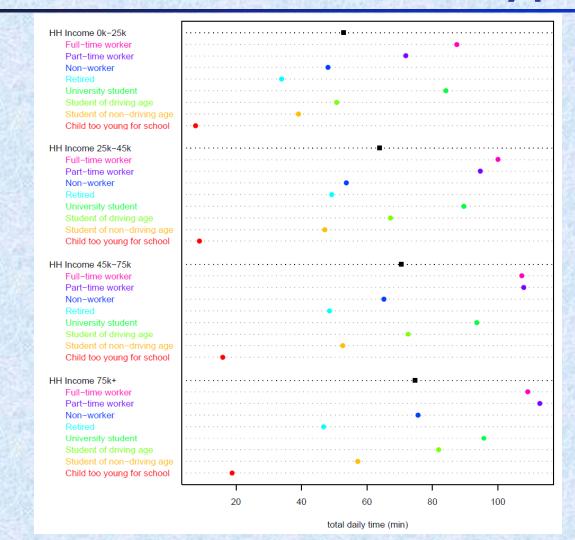
# What Sort of Measures/Visuals are Now Possible?


- ABM results in a complete activity diary for all residents
  - A wealth of activity/travel results
  - Just about any custom report/query/visual is now possible

#### Scenario testing (ARC examples)


- 2030 HOV2HOT Scenario
- 2030 Concept3 Scenario




#### Mode Share by Person Type



# Travelers by Age



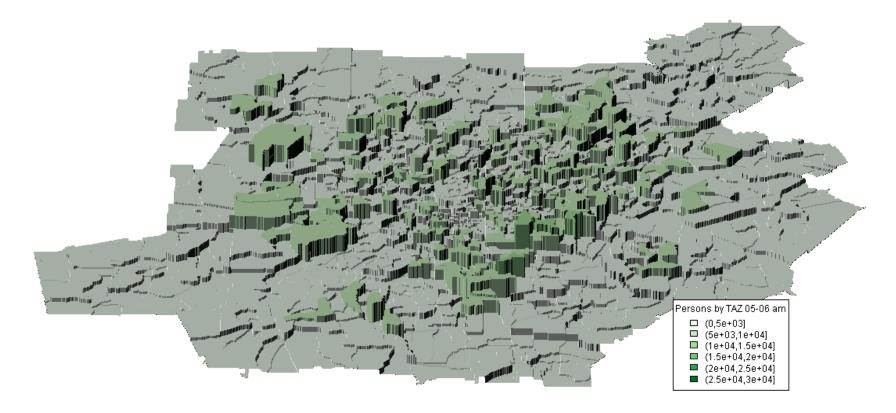

#### Time Spent Travelling by HH Income and Person Type







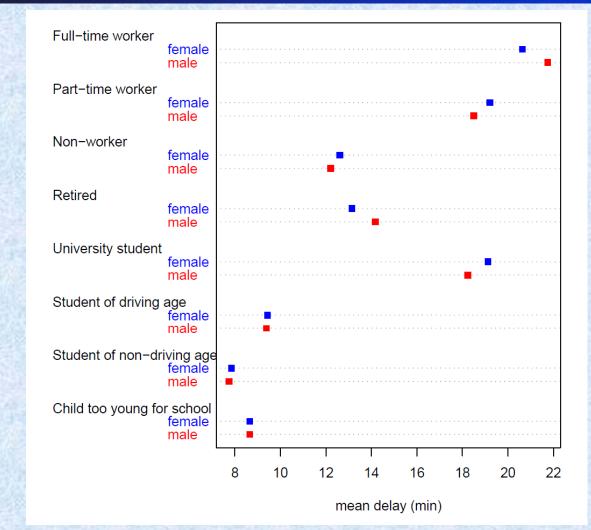
#### Persons Not At Home By TAZ and Hour





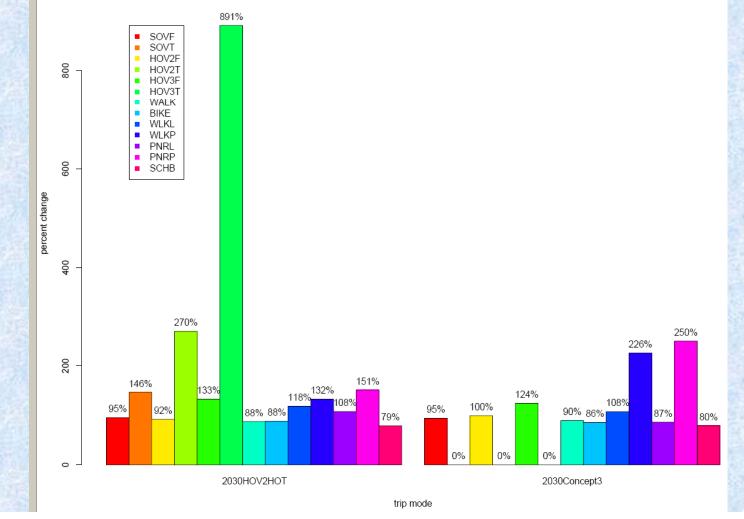






#### Persons By TAZ and Hour



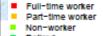
**PB PBS** 




## Mean Delay Peak Period Travel

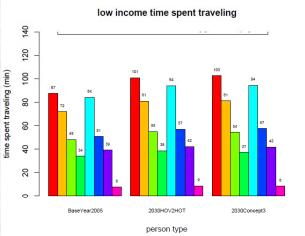


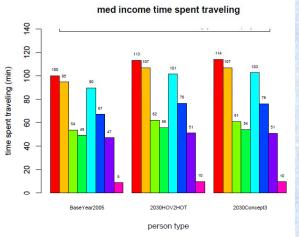



# Change in Mode Share Across Scenarios

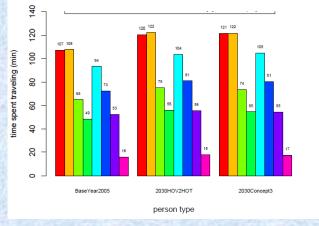


TOO YEARS @

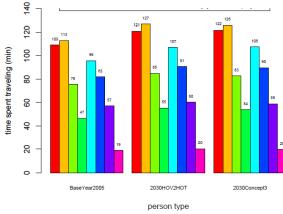

59


### Time Spent Traveling by Income & Person Type



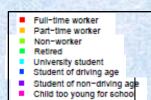

- Retired
- University student
- Student of driving age
- Student of non-driving age
- Child too young for school

100 YEARS (R

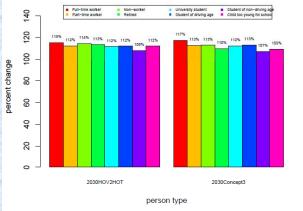




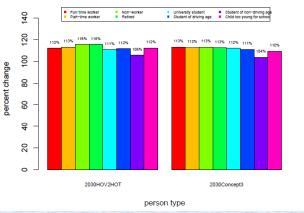


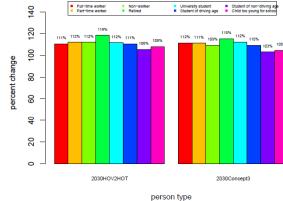


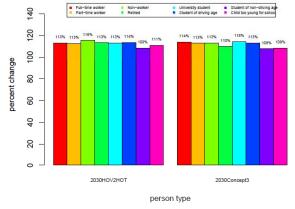

60


## Time Spent Traveling Across Scenarios




#### low income time spent traveling relative to base




high income time spent traveling relative to base



#### very high income time spent traveling relative to base



med income time spent traveling relative to base



. .



61

# 2. Effective Software & Hardware Solutions



#### 2.1. Example of Common Modeling Framework (CMF)



## **Common Modeling Framework**

- A library of tools for building transport and land-use models
- Written in the Java programming language
- Open source (Apache public license)
- Collaborative
- Currently used by over 30 clients

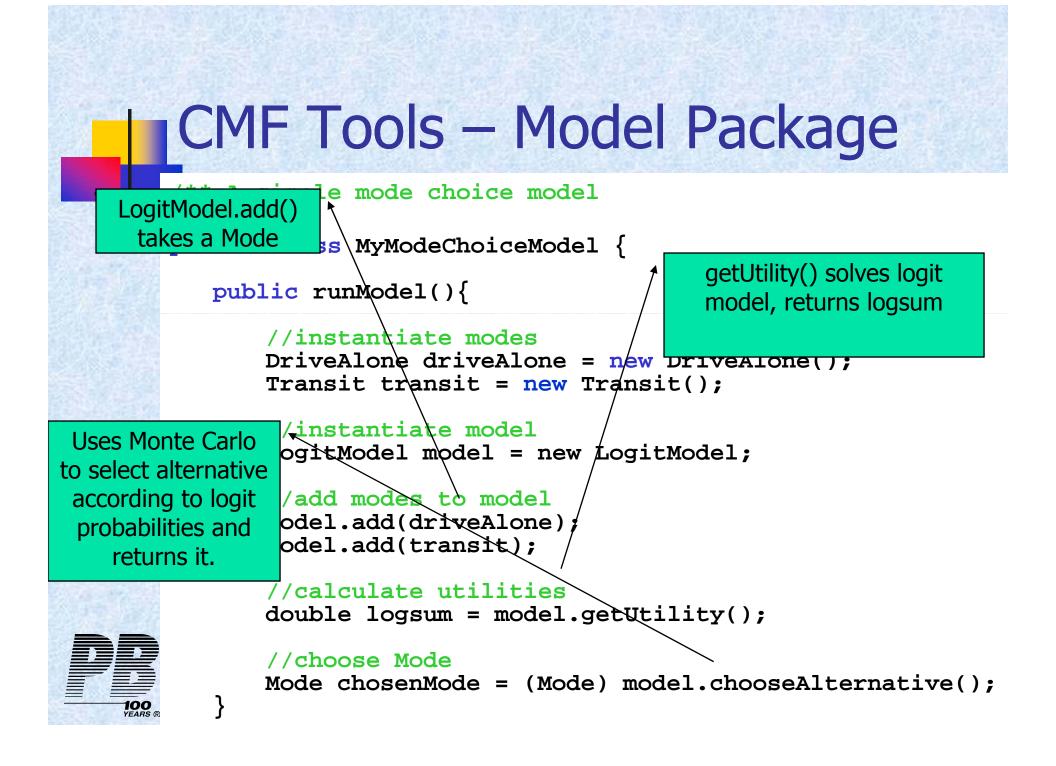


#### Java Programming Language

- Java is a fully Object-Oriented Programming (OOP) Language
- Java is easy to learn and use
- Java encourages good software design
- Java natively supports multi-threading
- Java is architecture-neutral



#### CMF Tools – Matrix Package


- Read/write to/from all major software (TransCAD, Cube, Emme, etc)
- Matrix calculations
- Random access (skims in memory, sparse matrices)
- N-dimensional matrix, iterative proportional fitting



#### CMF Tools – Model Package

- Create and apply discrete choice models
- Flexible in specification of nesting structures
- "Interface" pattern used any object can be an alternative
- Extensive debugging features





#### CMF Tools – Calculator Package

- Activity-based models typically utilize many logit choice models, some with many alternatives
- Traditional software relies on hard-coded utility equations
  - Inefficient Programmer responsible for coding utility equations
  - Inflexible Requires programmer to change equations and recompile
  - Imperfect Only one person typically reviews equations, which increases probability of bugs
- Utility Expression Calculator (UEC) developed to overcome these limitations



#### CMF Tools – Calculator Package

- The UEC is a Java package that reads and interprets an Excel workbook containing a logit model specification and its inputs
- The UEC solves the utility equations for a given decision-maker
- The UEC "opens up" the model specification

   anyone can edit the spreadsheets,
   change inputs & parameters, check that the
   model is properly specified, etc.



#### **Table Data:** CSV files of zonal,household, or person data

### Data Page

|   | Table Data  |                   |                     |                                                    |          |       |        |
|---|-------------|-------------------|---------------------|----------------------------------------------------|----------|-------|--------|
|   |             |                   |                     |                                                    |          |       |        |
|   | No          | Туре              | Format              | File                                               |          |       |        |
|   |             |                   |                     |                                                    |          |       |        |
| 2 | 1           | zone              | CSV                 | %project.directory%/Inputs/retailAccessibility.csv |          |       |        |
|   |             |                   |                     |                                                    |          |       |        |
|   | Matrix Data | 1                 |                     |                                                    |          |       |        |
|   | No          | Token             | Format              | File                                               | Matrix   | Group | Index  |
|   | 140         | Token             | i onnat             | 1 116                                              | IVIGUIA  | Стоар | IIIGEX |
|   | 1           | OP SOV TIME       | http://localhost:6l | %project.directory%/Outputs/SOVFFM05.SKM           | time     |       |        |
|   | 2           | OP_SOV_DIST       | http://localhost:6  | %project.directory%/Outputs/SOVFFM05.SKM           | distance |       |        |
|   | 3           | OP_WLKPRE_FWT     | http://localhost:6l | %project.directory%/Outputs/offpre.skm             | iwait    |       |        |
|   | 4           | OP_WLKPRE_XWT     | http://localhost:6l | %project.directory%/Outputs/offpre.skm             | xwait    |       |        |
|   |             | OP_WLKPRE_WLK     | http://localhost:6l | %project.directory%/Outputs/offpre.skm             | walkt    |       |        |
|   |             | OP_WLKPRE_LOCIVT  |                     | %project.directory%/Outputs/offpre.skm             | locivt   |       |        |
|   |             | OP_WLKPRE_RAILIVT | •                   | %project.directory%/Outputs/offpre.skm             | railivt  |       |        |
|   | 8           | OP_WLKPRE_XBUSIVT | http://localhost:6  | %project.directory%/Outputs/offpre.skm             | xbusivt  |       |        |

**Matrix Data:** Trip tables or level-of-service skims in zonezone format (TPPLUS, TRANSCAD, EMME2, and/or BINARY formats)



#### Must be consecutively numbered

Path and filename; percents used to pass in global variables set in properties file

|    |           |                   | and the Brook State Part of the Ad- |                                                    |          | A.2.2.3 C |       |
|----|-----------|-------------------|-------------------------------------|----------------------------------------------------|----------|-----------|-------|
| Та | ible Data |                   |                                     |                                                    |          |           |       |
| 2  |           |                   |                                     |                                                    |          |           |       |
| No | ) /       | Type /            | Format                              | File                                               |          |           |       |
|    |           |                   |                                     |                                                    |          |           |       |
| 1  | ×         | zone              | CSV                                 | %project.directory%/Inputs/retailAccessibility.csv |          |           |       |
| 65 |           |                   |                                     |                                                    |          |           |       |
| M  | atrix Dat | a /               |                                     |                                                    |          |           |       |
| 8  |           |                   |                                     |                                                    |          |           |       |
| No | )         | Token             | Format                              | File /                                             | Matrix   | Group     | Index |
|    |           |                   |                                     | ▶                                                  |          |           |       |
| 1  |           | OP_SOV_TIME       | http://localhost:6                  | %project.directory%/Outputs/SOVFFM05.SKM           | time     |           |       |
| 2  |           | OP_SOV_DIST       | http://localhost:6                  | %project.directory%/Outputs/SOVFFM05.SKM           | distance |           |       |
| 3  | ⋫         | OP_WLKPRE_FWT     | http://localhost:6                  | %project.directory%/Outputs/offpre.skm             | iwait    |           |       |
| 4  |           | OP_WLKPRE_XWT     | http://localhost:6                  | %project.directory%/Outputs/offpre.skm             | xwait    |           |       |
| 5  |           | OP_WLKPRE_WLK     | http://localhost:6                  | %project.directory%/Outputs/offpre.skm             | walkt    |           |       |
| 6  |           | OP_WLKPRE_LOCIVT  |                                     | %project.directory%/Outputs/offpre.skm             | locivt   |           |       |
| 7  |           | OP_WLKPRE_RAILIVT |                                     | %project.directory%/Outputs/offpre.skm             | railivt  |           |       |
| 8  |           | OP_WLKPRE_XBUSIVT | http://localhost:6                  | %project.directory%/Outputs/offpre.skm             | xbusivt  |           |       |
|    |           |                   |                                     |                                                    |          |           |       |

Matrix tokens are used to refer to the matrix in model specification page

Matrix column indicates which matrix in file to read in – number or string



Sparse matrices can be grouped for compression:

 Each group is a set of skims, such as "Peak walklocal"

• Each matrix group must have an index matrix, which determines whether the zone-pair is connected or not (typically in-vehicle time for the primary mode is used)

| Matrix | Data        |        |                                                          |        |       |      |
|--------|-------------|--------|----------------------------------------------------------|--------|-------|------|
| No     | Token       | Format | File                                                     | Matrix | Group | Inde |
| 1      | AUTO_TIME   | BINARY | %project.directory%outputs/binary/skim_pm_3.binary       | 1      |       |      |
| 2      | AUTO_DIST   | BINARY | %project.directory%outputs/binary/skim_pm_2.binary       | 1      |       |      |
| 3      | ZONE_DIST   | BINARY | %project.directory%outputs/skims/StraightLineDistanceCer | ntr 1  |       |      |
| 4      | WLKBUS_FWT  | BINARY | %project.directory%outputs/binary/pmetrnwtw_1.binary     | 1      | 1     |      |
| 5      | WLKBUS_XWT  | BINARY | %project.directory%outputs/binary/pmetrnwtw_2.binary     | 1      | 1     |      |
| 6      | WLKBUS_ACC  | BINARY | %project.directory%outputs/binary/pmetrnwtw_3.binary     | 1      | 1     |      |
| 7      | WLKBUS_AUX  | BINARY | %project.directory%outputs/binary/pmetrnwtw_4.binary     | 1      | 1     |      |
| 8      | WLKBUS_EGR  | BINARY | %project.directory%outputs/binary/pmetrnwtw_5.binary     | 1      | 1     |      |
| 9      | WLKBUS_IVT  | BINARY | %project.directory%outputs/binary/pmetrnwtw_6.binary     | 1      | 1     |      |
| 10     | WLKBUS_XIVT | BINARY | %project.directory%outputs/binary/pmetrnwtw_8.binary     | 1      | 1     |      |
| 11     | WLKBUS_FAR  | BINARY | %project.directory%outputs/binary/pmetrnwtw_11.binary    | 1      | 1     |      |
| 12     | WLKBUS_BRD  | BINARY | %project.directory%outputs/binary/pmetrnwtw_12.binary    | 1      | 1     |      |
| 13     | PNRBUS_FWT  | BINARY | %project.directory%outputs/binary/pmtrnwta_1.binary      | 1      | 2     |      |
| 14     | PNRBUS_XWT  | BINARY | %project.directory%outputs/binary/pmtrnwta_2.binary      | 1      | 2     |      |
| 15     | PNRBUS_DRV  | BINARY | %project.directory%outputs/binary/pmtrnwta_3.binary      | 1      | 2     |      |
| 16     | PNRBUS_AUX  | BINARY | %project.directory%outputs/binary/pmtrnwta_4.binary      | 1      | 2     |      |
| 17     | PNRBUS EGR  | BINARY | %project.directory%outputs/binary/pmtrnwta_5.binary      | 1      | 2     |      |
| 18     | PNRBUS_IVT  | BINARY | %project.directory%outputs/binary/pmtrnwta_6.binary      | 1      | 2     |      |
| 19     | PNRBUS XIVT | BINARY | %project.directory%outputs/binary/pmtrnwta_8.binary      | 1      | 2     |      |
| 20     | PNRBUS_FAR  | BINARY | %project.directory%outputs/binary/pmtrnwta_11.binary     | 1      | 2     |      |
| 21     | PNRBUS_BRD  | BINARY | %project.directory%outputs/binary/pmtrnwta_13.binary     | 1      | 2     |      |
| 22     | KNRBUS_FWT  | BINARY | %project.directory%outputs/binary/pmtrnwtk_1.binary      | 1      | 3     |      |
| 23     | KNRBUS_XWT  | BINARY | %project.directory%outputs/binary/pmtrnwtk_2.binary      | 1      | 3     |      |
| 24     | KNRBUS_DRV  | BINARY | %project.directory%outputs/binary/pmtrnwtk_3.binary      | 1      | 3     |      |
| 25     | KNRBUS_AUX  | BINARY | %project.directory%outputs/binary/pmtrnwtk_4.binary      | 1      | 3     |      |
| 26     | KNRBUS_EGR  | BINARY | %project.directory%outputs/binary/pmtrnwtk_5.binary      | 1      | 3     |      |
| 27     | KNRBUS_IVT  | BINARY | %project.directory%outputs/binary/pmtrnwtk_6.binary      | 1      | 3     |      |
| 28     | KNRBUS_XIVT | BINARY | %project.directory%outputs/binary/pmtrnwtk_8.binary      | 1      | 3     |      |
| 29     | KNRBUS_FAR  | BINARY | %project.directory%outputs/binary/pmtrnwtk_11.binary     | 1      | 3     |      |
| 30     | KNRBUS BRD  | BINARY | %project.directory%outputs/binary/pmtrnwtk 13.binary     | 1      | 3     |      |

**UEC** Dat

100

### UEC Model – Auto Ownership

A row for each utility term

100

A column for each alternative (0, 1, 2, and 3+ autos)

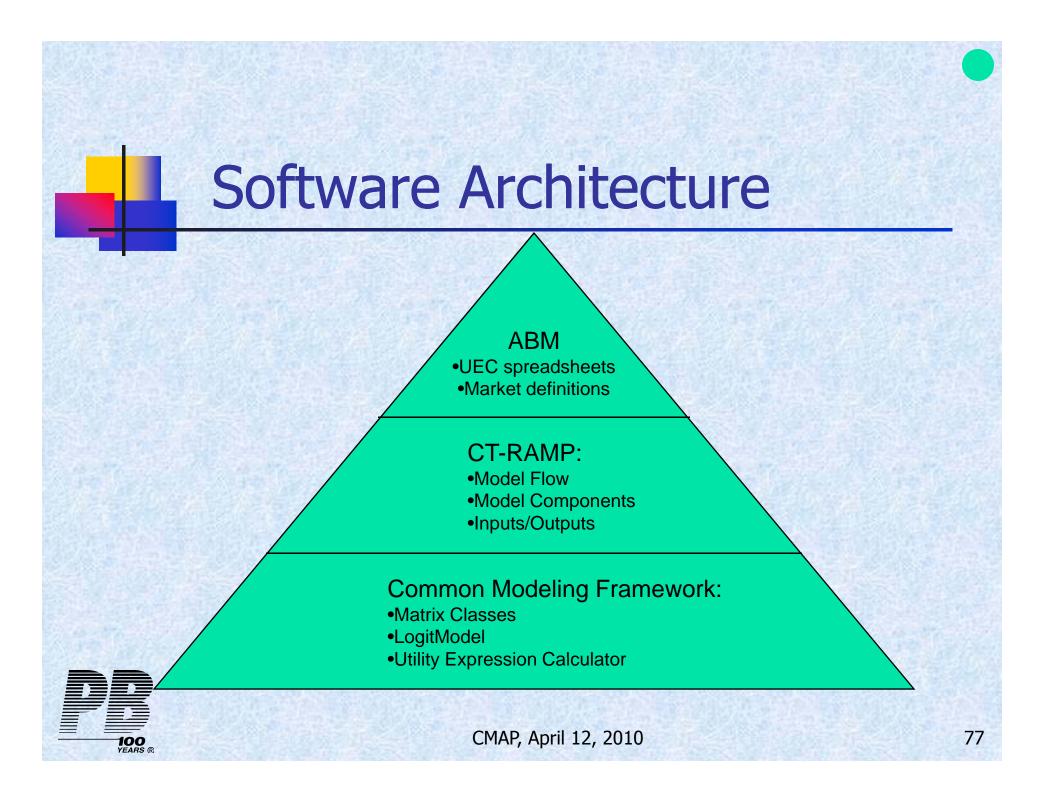
1

|        |                  | 11                                 | for the second      | No. Contraction       |                                          | a sector as          |        |            | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | A STATE |
|--------|------------------|------------------------------------|---------------------|-----------------------|------------------------------------------|----------------------|--------|------------|------------------------------------------|---------|
| Model  | 3                | aut/ownership                      |                     |                       | Decision-making-unit                     | h                    | Alt    | $\sqrt{4}$ |                                          |         |
|        | - ·              |                                    |                     | <b>E</b> .11          |                                          |                      |        | <b>A</b>   |                                          |         |
| No     | Token            | cen Description                    |                     | Filter                | Formula for variable                     | Inde                 |        | Alt2       | Alt3                                     | Alt4    |
| -      | ///              |                                    | _                   |                       |                                          | O_autos              | 1_auto | 2_autos    | 3+_autos                                 |         |
|        | //               |                                    |                     |                       | 4                                        |                      | 5.050  | 2,422      |                                          | 0.700   |
| 1<br>5 |                  | Alternative-specific constant      |                     |                       | 1                                        |                      | -5.352 | -2.132     | 0                                        | -0.768  |
| 2      |                  | Household Size 1                   |                     |                       | if(@size==1,1,0)                         |                      | 2.613  | 2.172      | 0.0                                      | 0.000   |
| 5      | Household Size 2 |                                    |                     | if(@size==2,1,0)      |                                          | 0.000                | 0.400  | 0.0        | -0.673                                   |         |
| 4      |                  | Income Group 1                     |                     |                       | if(@income==1,1,0)                       |                      | 2.878  | 2.185      | 0.0                                      | -1.285  |
| 5      | ▶//              | Income Group 2                     |                     |                       | if(@income==2,1,0)                       |                      | 1.734  | 1.731      | 0.0                                      | -1.061  |
| 6      | ▶/               | Income Group 3                     |                     |                       | if(@income==3,1,0)                       |                      | 0.000  | 1.152      | 0.0                                      | -1.025  |
| 7      | 6                | Income Group 4                     |                     |                       | if(@income==4,1,0)                       |                      | 0.000  | 0.665      | 0.0                                      | -0.535  |
| 8      | r                | Worker O                           |                     |                       | if(@workers==0,1,0)                      |                      | 1.015  | 0.000      | 0.0                                      | 0.000   |
| 9      | Worker 1         |                                    |                     | if(@workers==1,1,0)   |                                          | 0.000                | 0.000  | 0.0        | 0.000                                    |         |
| 10     |                  |                                    |                     | if(@workers==2,1,0)   |                                          | 0.000                | -0.934 | 0.0        | 0.648                                    |         |
| 11     |                  |                                    |                     | if(@workers==3,1,0)   |                                          | 2.195                | 0.000  | 0.0        | 2.257                                    |         |
| 12     |                  | GVSAD retirement zone              |                     |                       | if(GV_SAD_IND==1,1,0)                    | z                    | 0.000  | 1.200      | 0.0                                      | 0.000   |
| 13     |                  |                                    |                     | if(HI_RET_IND==1,1,0) | z                                        | 0.000                | 0.916  | 0.0        | 0.000                                    |         |
| 14     |                  | Tot emp w/i 20 min by transit, no  |                     |                       | trn20w_emp                               | z                    | 0.014  | 0.000      | 0.0                                      | 0.000   |
| 15     |                  | Percent of TAZ w/i 1/3 mile of tra | nsit stop           |                       | shortWalk                                | z                    | 0.021  | 0.010      | 0.0                                      | 0.000   |
|        |                  |                                    |                     |                       |                                          |                      |        |            |                                          |         |
|        |                  | T                                  |                     |                       |                                          |                      |        | T          |                                          |         |
|        |                  |                                    | 1100                |                       |                                          |                      |        |            | _                                        |         |
|        |                  |                                    | A formula field for |                       | 14.652                                   | Coeffic              | cients | s for e    | ach                                      |         |
|        |                  |                                    |                     |                       | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |                      |        |            |                                          |         |
|        |                  |                                    | omputing data items |                       |                                          | term and alternative |        |            |                                          |         |
| 100-11 |                  |                                    |                     | mput                  | ing data items                           | and W                | torn a |            | una                                      |         |
|        |                  |                                    | LAS LINE            |                       |                                          | 76118                |        | 1. A.      | 1.81                                     |         |
| ==     |                  |                                    |                     |                       |                                          |                      |        |            |                                          |         |

### UEC Model – Mode Choice

Results of formulas can be stored as tokens, to be used in later formula or filter fields @ refers to a variable that is computed in memory and given to the UEC in the java code; on-the-fly variable calculations

|    |                   |                                                    | The Party of the second s |                                                 |              |
|----|-------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------|
| No | Token             | Description                                        | Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Formula for variable                            | Index        |
|    |                   |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 | DRIVEA       |
| 88 |                   |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |              |
| 23 | canWalk 🖌         | Walk to transit is available - walk market         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | if(@walkMarket<4,1,0)                           |              |
| 24 | canDrive          | Drive to transit is available - walk market        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | if(@walkMarket<6,1,0)                           |              |
| 25 | canDriveShort     | Drive to transit is available short walk egress    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | if(@walkMarket==0, 1, 0) + if(@walkMarket==2, 1 |              |
| 26 | canDriveLong      | Drive to transit is available long walk egress     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | if(@walkMarket==1, 1, 0) + if(@walkMarket==3, 1 |              |
| 27 | PNRBusAvailable   | PNR to bus is available                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | if(PNRBUS_IVT/100>0,1,0)*if(PNRBUS_IVT/100<     | do,do        |
| 28 | KNRBusAvailable   | KNR to bus is available                            | $\mathbf{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | if(KNRBUS_IVT/100>0,1,0)*if(KNRBUS_IVT/100<     | do,do        |
| 29 | walkModeAvailable | Walk mode available if distance less than 3 miles  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | if(ZONE_DIST<3,1,0)                             | do           |
| 30 | bikeModeAvailable | Bike mode available if distance less than 10 miles |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | if(ZONE_DIST<10,1,0)                            | do           |
| 31 | wBusTotWalkSS     | Walk Bus total walk time, short acc - short egr    | walkBusAvailable * canWalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | if(@walkMarket==0, min(WLKBUS_ACC/100,sho       | r do, do, do |
| 32 | wBusTotWalkSL     | Walk Bus total walk time, short acc - long egr     | walkBusAvailable * canWalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | if(@walkMarket==1, min(WLKBUS_ACC/100,sho       | r do,do,do   |
| 33 | wBusTotWalkLS     | Walk Bus total walk time, long acc - short egr     | walkBusAvailable * canWalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | if(@walkMarket==2, min(WLKBUS_ACC/100,long      | do,do,do     |


Filter field: Don't calculate this unless a condition is met

Index field indicates how to index into data read in on data page:

- z: zone data
- od, do: matrix data
- (Indexes set in java code)

#### 2.2. General Software Architecture





#### 2.3. Critical Issues & Time-Taking Operations



#### Location Choice and Shadow Pricing

Calculate Destination Choice Size Terms

For worker, university, school age people in each HH:

For Determined Segmentation:

Shadow Pricing

100

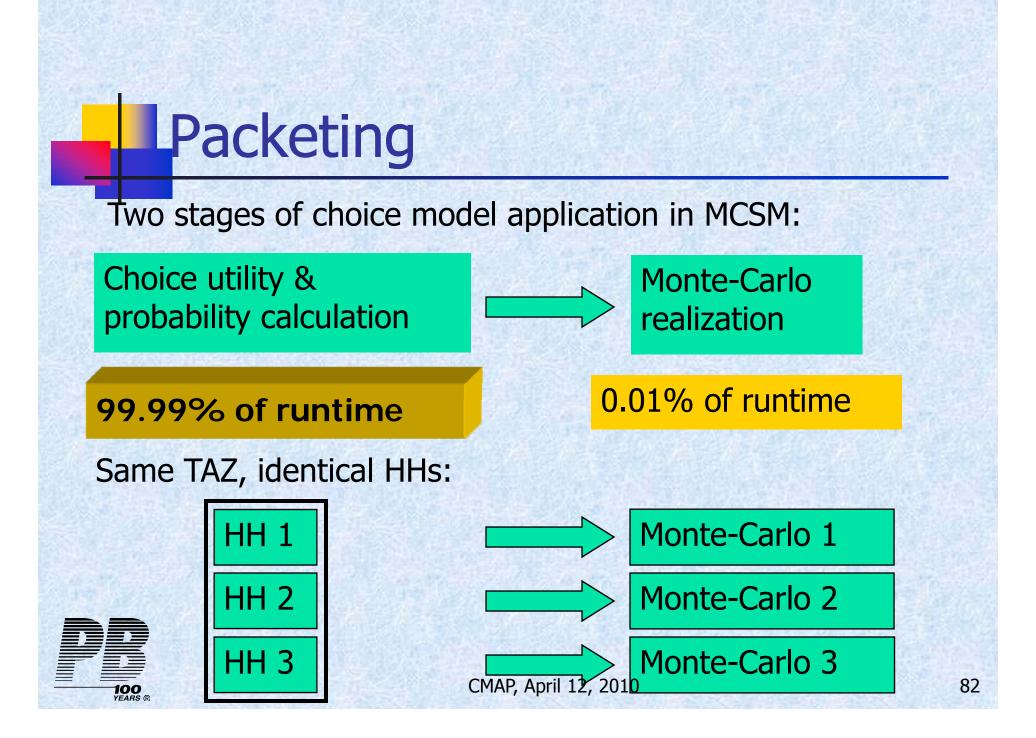
Select Sample of Alternatives

For Determined Sample of Alternatives:

Select Destination TAZ and Walk Subzone

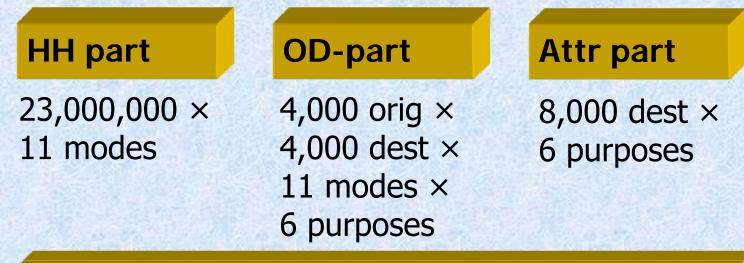
Calculate Mode Choice Logsum

## Shadow Price Adjustments


- Constraining Mechanism to get total tour origins and destinations to match for long term segments
- Size variables adjusted to reflect more/less attractiveness by segment to influence destination choice
- Iterate procedure in previous flowchart until sufficiently constrained
- Calibration determines required number of iterations



### Performance

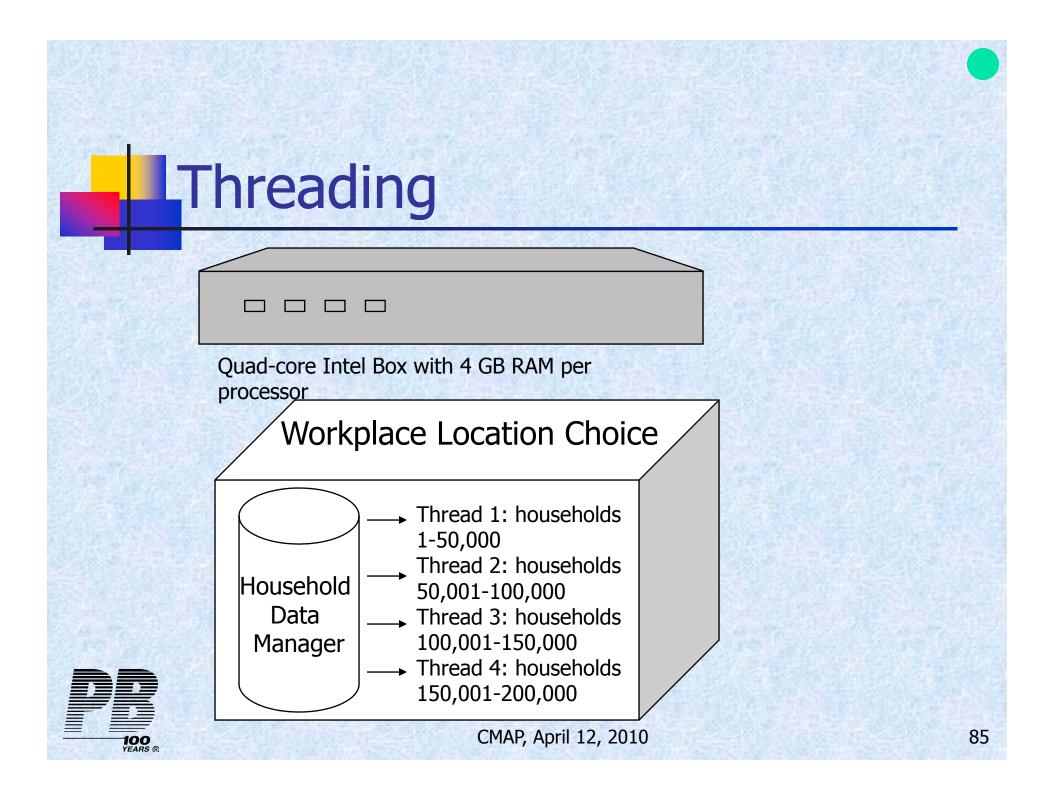

- Two components take 99% of the running time, everything else takes minutes:
  - Location choice
  - Multi-class assignment and network skimming procedures
- Solutions:
  - Parallel processing
  - Pre-sampling of zones
  - Packeting
  - Smart pre-calculation

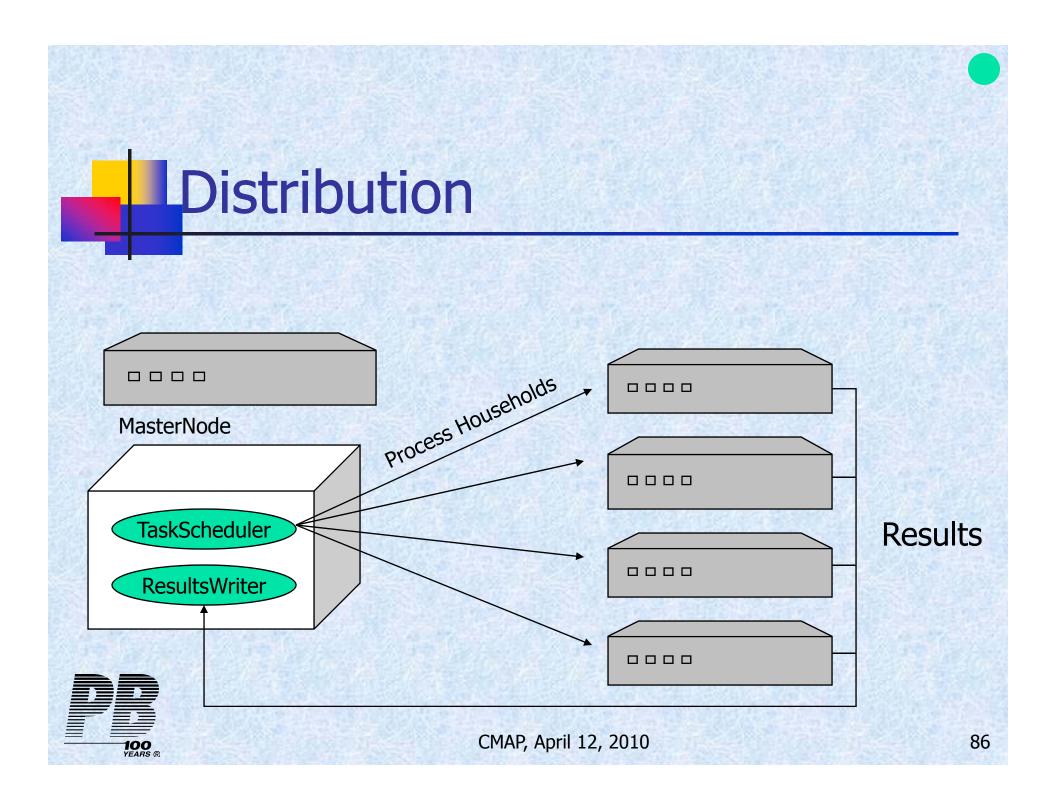




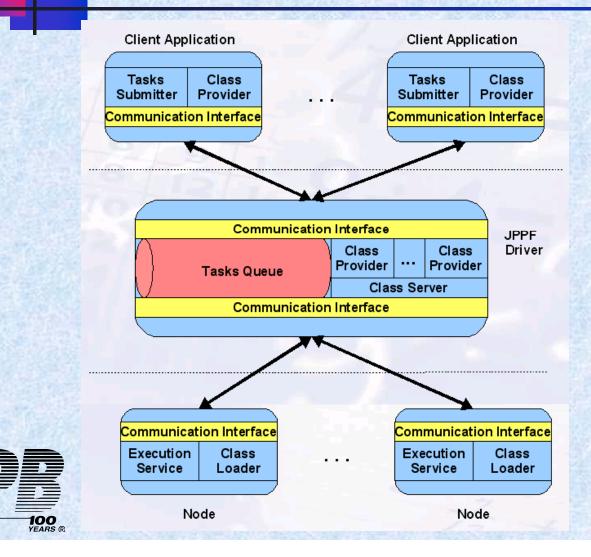
### **Smart Pre-Calculations**

Destination choice utility for 23,000,000 tours × 8,000 zones × Log-sum of 11 modes:




**Quick Combination** 


#### 2.4. Distribution & Threading

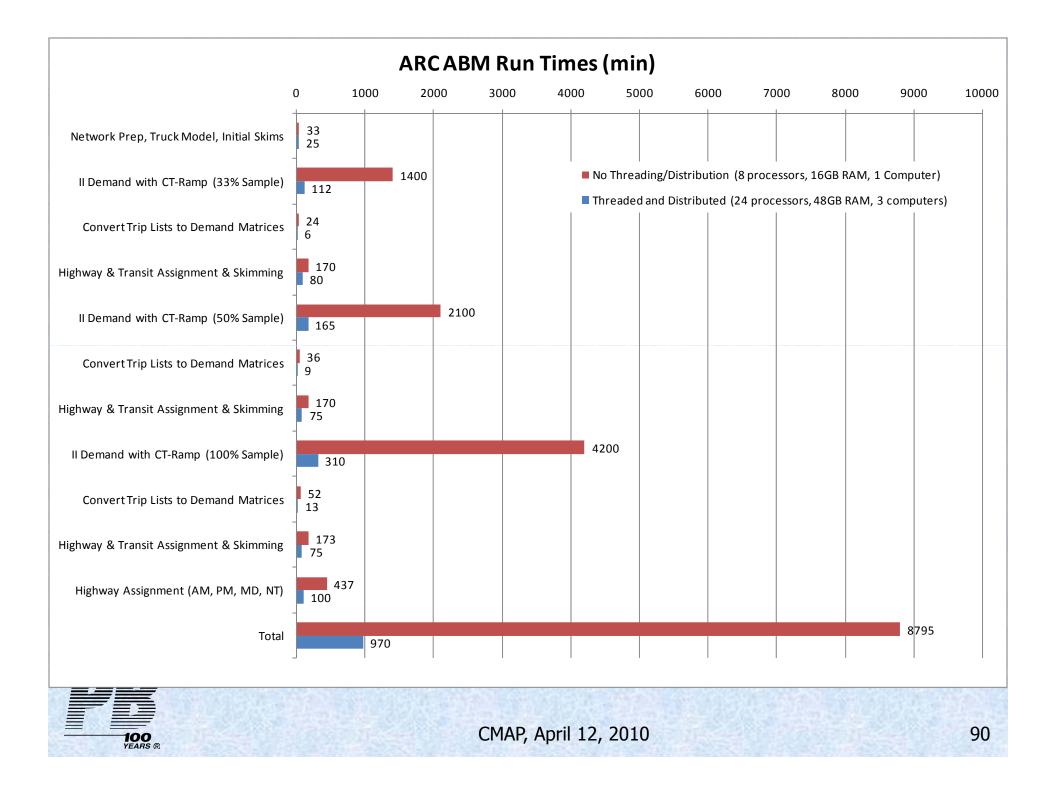






### JPPF Framework




#### 2.5. Runtime Statistics



## Runtimes

- Model runtime is roughly proportional to population size
- Network skimming and assignment procedures are still proportional to the squared number of TAZs – 50% or more of total model runtime is due to skimming/assignment
- Overnight model runs for large regions possible with threading and distribution
- More hardware = less runtime

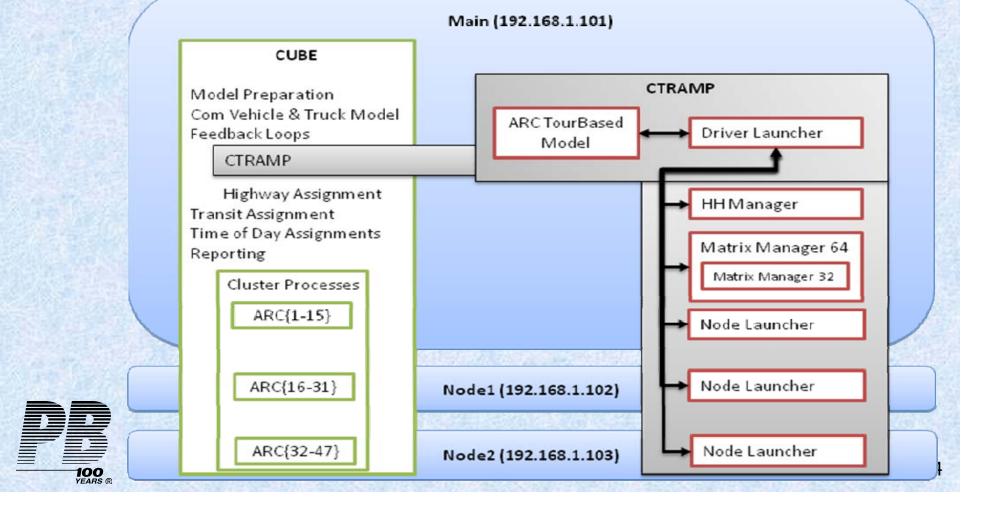




|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | 2000                 |                    |           | 2000            |                    | 2030            |           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------|--------------------|-----------|-----------------|--------------------|-----------------|-----------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Model components                                      | MORPC 3 MORPC 4 COTA |                    | ODOT      | MORPC 3 MORPC 4 |                    | СОТА            |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                      |                    |           |                 |                    |                 |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Households                                            | 610,774              | 610,774            | 610,774   |                 | 872,919            | 872,919         | 872,919   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                      |                    |           |                 |                    |                 |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Population                                            | 1,435,389            | 1,435,389          | 1,435,389 |                 | 1,956,660          | 1,956,660       | 1,956,660 |  |
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tours                                                 | 2 074 619            | 2 072 650          | 2 075 707 |                 |                    | 2 007 214       | 2 006 117 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tours<br>Core Model Total (3 iterations)              | 2,074,618<br>35:43   | 2,073,659<br>31:20 | 2,075,797 | 10:25           | 2,997,507<br>48:35 | 2,997,214 41:23 | 2,996,117 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iteration 1                                           | 11:27                | 10:08              | 6:51      | 3:29            | 16:18              | 13:28           | 8:30      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iteration 2                                           | 11:26                | 9:55               | 6:28      | 3:25            | 14:59              | 12:48           | 8:06      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iteration 3                                           | 12:49                | 11:16              | 7:36      | 3:20            | 17:17              | 15:06           | 10:06     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iter 1 - Population Synthesis                         | 0:02                 | 0:02               | 0:01      | 0:01            | 0:02               | 0:02            | 0:01      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iter 1 - Sending Files to Workers                     | 0:20                 | 0:20               | 0:12      | 0:39            | 0:19               | 0:20            | 0:14      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iter 1 - Auto Ownership                               | 0:01                 | 0:01               | 0:00      | 0:00            | 0:02               | 0:02            | 0:01      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iter 1 - Mandatory Tour                               |                      |                    |           |                 |                    |                 |           |  |
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Generation                                            | 0:53                 | 0:53               | 0:39      | 0:29            | 1:15               | 1:15            | 0:39      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iter 1 - Mandatory DTM                                | 4:01                 | 3:14               | 1:59      | 0:55            | 6:07               | 4:48            | 2:50      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iter 1 - Joint Tour Generation                        | 0:12                 | 0:12               | 0:08      | 0:07            | 0:14               | 0:14            | 0:08      |  |
| MODDO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Iter 1 - Joint Tour DTM                               | 0:08                 | 0:06               | 0:04      | 0:05            | 0:08               | 0:07            | 0:05      |  |
| MORPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                      |                    |           |                 |                    |                 |           |  |
| MUNFL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Iter 1 - Individual Tour Generation                   | 0:05                 | 0:05               | 0:05      | 0:03            | 0:07               | 0:07            | 0:05      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iter 1 - Individual Tour DTM                          | 0:54                 | 0:41               | 0:23      | 0:11            | 1:15               | 0:56            | 0:30      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iter 1 - At-Work Sub-Tour DTM                         | 0:08                 | 0:07               | 0:06      | 0:03            | 0:12               | 0:10            | 0:07      |  |
| ABM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Iter 1 - Mandatory Stops Model                        | 0:49                 | 0:38               | 0:21      | 0:11            | 1:14               | 0:59            | 0:32      |  |
| ADIVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Iter 1 - Joint Stops Model                            | 0:07                 | 0:06               | 0:04      | 0:07            | 0:08               | 0:07            | 0:05      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iter 1 - Individual Stops Model                       | 0:54                 | 0:43               | 0:24      | 0:14            | 1:11               | 0:54            | 0:32      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iter 1 - At-Work Stops Model                          | 0:06                 | 0:05               | 0:04      | 0:05            | 0:09               | 0:08            | 0:05      |  |
| Duration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Iter 1 - Writing Files and Trip                       |                      |                    |           |                 |                    |                 |           |  |
| Runtimes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tables                                                | 0:13                 | 0:13               | 0:10      | 0:12            | 0:35               | 0:34            | 0:26      |  |
| <b>NUTURICS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iter 1 - External Model +                             | 0:00                 | 0:00               | 0:00      |                 | 0:01               | 0:01            | 0:02      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iter 1 - Commercial Vehicle +                         | 0:02                 | 0:02               | 0:01      |                 | 0:02               | 0:02            | 0:02      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iter 1 - IE Trips +                                   | 0:00                 | 0:00               | 0:00      |                 | 0:00               | 0:00            | 0:00      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iter 1 - Highway Assignment - 2                       | 1.00                 | 1.14               | 1.07      |                 | 2.02               | 1.21            | 1.10      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | period +<br>Iter 1 - Highway and Transit              | 1:08                 | 1:14               | 1:07      |                 | 2:03               | 1:31            | 1:16      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - ·                                                   | 1.17                 | 1.17               | 0.52      |                 | 1.04               | 1.02            | 0.47      |  |
| and the second sec | Network Skimming +<br>Iter 3 - Highway Assignment - 4 | 1:17                 | 1:17               | 0:53      |                 | 1:04               | 1:03            | 0:44      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | period +                                              | 2.14                 | 2.18               | 1.51      |                 | 3:11               | 2.07            | 2.10      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iter 3 - Transit Assignment - 2                       | 2:14                 | 2:18               | 1:51      |                 | 5.11               | 3:07            | 2:19      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | period +                                              |                      | 0:16               | 0:10      |                 | 0:12               | 0:12            | 0:07      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | period +                                              | 0.10                 | 0.10               | 0.10      | 1               | 0.12               | 0.12            | 0.07      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                      |                    |           |                 |                    |                 |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Core Model                                            | 2:59                 | 2:30               | 1:36      | 1:09            |                    |                 |           |  |
| YEARS ®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       | 2.00                 | 16%                | 36%       | 27%             |                    |                 |           |  |

#### 2.6. Hardware Configurations




## ARC ABM Example

- 3 computers:
  - Windows Server 2003 64bit
  - Dual Quad Core Intel Xeon X570 2.93 GHz Processors (8 total)
  - 32 GB of RAM
  - Cube Voyager + 8 seat Cube Cluster license (16 total seats with hyperthreading)





### **ARC ABM System Design**



## MTC ABM Example

- 4 computers:
  - 16 64-bit processors (2 hyper-threaded quad-core chips);
  - 48 GB RAM;
  - 2 TB hard drive on master; 1 TB hard drive on slaves;
  - Microsoft Windows 2008 Server (64-bit) operating system.
- Hardware cost ≈ \$35K



#### 2.7. Staffing & Qualification Requirements



# **Different Groups**

#### System analyst / architect:

- Modification of the model system structure, for example adding an interface between ABM and DTA,
- Programmer:
  - Modifications of the code, for example, adding new transit modes,
- Modeler:
  - Manipulating UEC,
- End user
  - Manipulating input data, networks, and outputs.



## Conclusions

- Core demand model runtime is roughly proportional to population size,
- Network skimming and assignment procedures are still proportional to the squared number of TAZs – 50% or more of total model runtime is due to skimming/assignment,
- Overnight model runs for large regions comparable to CMAP possible with threading and distribution.
- The substantial improvements in run times were made possible by a strong supply of computing power and a distributed/threaded implementation.
- More hardware can reduce runtime. The modeling system is built to take advantage of adding additional computers/processes to reduce run times even more.
- Longer term, some other computing technology solutions might prove effective, including possibly cloud computing.

