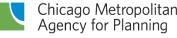

Transportation Technology and Operations Coalition

February 2nd, 2023 9:30 – 11:30 a.m.

When you are not speaking, please mute your microphone to reduce background noise.

1.0 Welcome and announcements

Stephen Zulkowski, Kane County Division of Transportation (Chair)


2.0 Agency updates

TTOC Members

3.0 CMAP announcements

Aaron Brown and Noah Harris, CMAP

4.0 HSIP program and scoring criteria

Tim Peters, IDOT Jonathan Lloyd, IDOT

IDOT HSIP Program History & What Makes For Good Applications

Tim Peters PE Local Policy and Technology Engineer Central Bureau of Local Roads and Streets

Characteristics of the HSIP Program

Federal Program administered by IDOT

Separate State and Local HSIP Programs

HSIP Program

- Federal Program Managed by IDOT
- Split into State and Local HSIP programs
- State program focuses on State roadways
- Local HSIP intended for non-State/Local roadways
- Local HSIP is an annual call for projects IDOT.click/T2
- Interested agencies may submit applications during the call
- Applications are reviewed by IDOT at the District Level and at the State Level

BIL (IIJA) and HSIP

- BIL continues the Highway Safety Improvement Program (HSIP) to achieve a significant reduction in traffic fatalities and serious injuries on all public roads, including non-State-owned public roads and roads on tribal land. The HSIP requires a data-driven, strategic approach to improving highway safety on all public roads that focuses on performance.
- The BIL does not extend the FAST Act prohibition (FAST Act § 1401) on using HSIP funds to purchase, operate, or maintain an automated traffic enforcement system.
- <u>Vulnerable Road User Safety Special Rule</u>
- The BIL establishes a new special rule, which-
 - applies to each State in which vulnerable road user fatalities account for not less than 15% of all annual crash fatalities; and
 - requires a State subject to the special rule to obligate not less than 15% of its HSIP funds the following FY for highway safety improvement projects to address vulnerable road user safety. [§ 11111(a)(5); 23 U.S.C. 148(g)(3)]
- SS4A Not HSIP, but additional money for safety Comprehensive Safety Action Plan Required

Changes to HSIP as a result of IIJA

- BIL continues the Highway Safety Improvement Program (HSIP) to achieve a significant reduction in traffic fatalities and serious injuries on all public roads, including non-State-owned public roads and roads on tribal land. The HSIP requires a data-driven, strategic approach to improving highway safety on all public roads that focuses on performance.
- The BIL does not extend the FAST Act prohibition (FAST Act § 1401) on using HSIP funds to purchase, operate, or maintain an automated traffic enforcement system.

<u>Vulnerable Road User Safety Special Rule</u>

- The BIL establishes a new special rule, which—
 - applies to each State in which vulnerable road user fatalities account for not less than 15% of all annual crash fatalities; and
 - requires a State subject to the special rule to obligate not less than 15% of its HSIP funds the following FY for highway safety improvement projects to address vulnerable road user safety. [§ 11111(a)(5); 23 U.S.C. 148(g)(3)]

History of HSIP Program

Fiscal Year	Number of Applications	Applications Funded	-	Mark 🔽	B	SPE Statewide Transfer		Awarded Fund	Adjustments 🔽	Llna	
		Funded					, , , , , , , , , , , , , , , , , , ,			Ulla	
FY15 and Prior									\$ 200,000	\$	(200,000)
FY 16 (no solicitation)	NA	NA	\$	14,739,000			\$	-	\$ -	\$	14,739,000
FY 17 & FY 18	30	27	\$	31,174,000			\$	23,300,092	\$ 1,965,294	\$	5,908,614
FY 19	43	34	\$	15,853,000			\$	20,651,604	\$ 802,711	\$	(5,601,315)
FY 20	36	24	\$	16,174,000			\$	25,964,192	\$ 453,630	\$	(10,243,822)
FY 21	39	26	\$	16,090,800			\$	23,198,905	\$ 881,521	\$	(7,989,626)
FY22	38	16	\$	16,090,800	\$	2,820,630	\$	18,638,161		\$	273,269
FY23	37	19	\$	19,997,651	\$	3,358,214	\$	19,785,406	\$ 386,675	\$	3,183,784
FY24	43	28	\$	30,633,000	\$	-	\$	30,622,364	\$ -	\$	10,636
D1 Relinquished Funds*										\$	2,492,400
Total			\$	160,752,251			\$	162,160,724	\$ 4,689,831	\$	2,572,940

Evolution of the HSIP Program

In the early years of the program a large number of projects focused on guardrail

Eventually a \$1M limit for guardrail projects was added

There was a strong desire to focus on items other than guardrail.

Future - VRUs

Evolution of the HSIP Program

- Early HSIP was strictly driven by B/C ratio
- B/C ratio is still important, but not paramount
- Systemic changes are acceptable
 - (We have 2 similar locations, 1 has a significant crash history, the other does not can we apply similar treatments to both locations?)

Poor choices for HSIP applications

Railroads

Bridges

Upgrades for both railroads and bridges are available through other programs such as Section 130, Illinois Special Bridge, Township Bridge Program.

Railroad crossing improvements and bridges are both expensive.

Dealing with a state route

Definitely involve your district

Generally, improvements for state routes should be funded by state HSIP.

Crossing or intersecting a state route significantly complicates a project.

District approval is required for anything involving a state route.

Single application vs. bundled application Does it make sense? i.e. One general location, contiguous route

What synergy is involved in the combination?

Small applications may be funded with remainders

Is the administration of the project clear?

How are applications reviewed

Districts perform an initial review

Results are forwarded to the central office

Committee meets and selects the winning applications

Representatives from BSPE, BLRS, and FHWA make up the committee

Things that help an application

- Focus on safety features
- Consistent crash type and appropriate treatment
- RORI tool
- Tell a story or make a case for why this improvement is necessary
- Pictures, maps and diagrams help
- Have you tried low-cost improvements? Are you asking for low-cost improvements?
- Is the proposed treatment appropriate for the crash types?
- Are bicycles and pedestrians considered?

Now is a great time to ask for help

- Don't wait for the call for applications to ask for help?
- Once the call is open, IDOT's ability to help with applications is limited.
- IDOT District 1, Central Local Roads and BSPE can answer questions and provide technical assistance.
- Once the call for applications is open, our ability to provide support is reduced.

Questions?

IDOT HSIP Scoring & Evaluation Criteria

Jonathan Lloyd, PE, RSP IDOT District One Traffic Studies Engineer

HSIP Program

- Highway Safety Improvement Program (HSIP)
- Federally funded program
- Intended to reduce severe/fatal injury crashes
- 90%/10% split

HSIP Program

- Managed by IDOT
- Split into State and Local HSIP programs
- State program focuses on State roadways
- Local HSIP intended for non-State/Local roadways
- Local HSIP is an annual call for projects
- Interested agencies may submit applications during the call
- Applications are reviewed by IDOT

HSIP Application Requirements

- Crash Analysis
- Countermeasure Selection
- Cost Estimate
- Benefit/cost ratio (B/C)
- Project Timeline
- Project Narrative
- Application Form
- Supporting Documentation

Ranking Criteria

- Cost
- Frequency of severe/fatal injury crashes
- Identification of notable crash patterns
- Appropriateness of countermeasure selection
- B/C ratio
- Address identified emphasis areas in Strategic Highway Safety Plan
- Other emphasis areas and/or countermeasures in circular letter.
- Compared against other submittals

What makes a better application?

- High frequency of severe/fatal injury crashes
- Location identified as a high/critical safety tier and/or emphasis area
- Accuracy of crash data including, type, circumstances, and causes
- Effectiveness of chosen countermeasures for identified crash patterns
- Cost
- Location

Common Issues

- Incomplete application
- Inaccurate or missing data
- Low B/C (less than 1.0)
- High Cost
- Ineffective countermeasures/connection to crash patterns
- State versus Local program (some exceptions)
- Perceived versus actual safety

Suggestions

- When in doubt, reach out
- Use Department provided resources (Heat Maps, Data Trees, etc)
- Listen to Department feedback
- Denied application may be better suited for other funding
- HSIP website: <u>Highway System (illinois.gov)</u>

Crash data

- Use IDOT's online safety information and request system <u>Roadway</u> <u>Safety (illinois.gov)</u>
- Contact appropriate District and Central Office Staff
- Contact Law Enforcement/Local Agencies
- Safety Portal: <u>https://webapps.dot.illinois.gov/SafetyPortal/</u>
- Strategic Highway Safety Plan

Questions?

5.0 Traffic signal asset condition study

Ryan Fries, Southern Illinois University Edwardsville

OPTIMUM TRAFFIC SIGNAL CONDITION ASSESSMENT AND STRATEGIC MAINTENANCE PLANNING (ICT R27-251)

PRESENTATION OUTLINE

Project Tasks

Literature Key Findings

- Condition Assessment and Standards
- Financial Awareness
- Asset Management

Condition Assessment

Next Steps

IFET THE TEA Principal Investigator: Ryan Fries, PhD, PE Co-PI: Yan Qi, PhD, PE Key Personnel Gregory Owens, PE Shawn Leight, PE, PTOE, PTP Jacob Kaltenbronn, EI Anne Werner, PhD, PE • Ujwal Sah, MS Candidate Srisha Devkota, MS Student

PROJECT SCHEDULE

Project Milestones		2022						2023									2024								
Month 8		9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8
Kickoff Meeting																									1
Task 1: Review the current state of																									
knowledge																									
Task 2: Develop recommended																									R
condition assessment procedures																									3
Task 3: Recommend condition																									
standards																									
Task 4: Develop companion																									
procedures																									
Task 5: Reporting																									
TRP Meetings																									

TASK 1: REVIEW CURRENT KNOWLEDGE (8/16/22 - 11/30/22)

- •Selection of performance measures
- •Measurement of current conditions
- •Selection of desired conditions

Condition Assessment and Condition Standards

Financial Awareness

- Installation cost of signal assets
- •Life cycle cost without Maintainance
- Life cycle cost with preventive maintainance

- Indentification of life cycle risks for signal assets
- Development of procedure to reach desired condition
- Consider available funding

Risk Mitigation through Proactive Management

TASK 2: DEVELOP CONDITION ASSESSMENT PROCEDURES (10/1/22 – 8/31/23)

Focus Areas

- Structure
 - Bases, poles, mast arms/span wire, conduit, wiring, pull boxes, and displays/indications
- Cabinet
 - Exterior, interior components, detection, and power supply
- Controller
 - Type, make/model, firmware, and communication links

TASK 2 STEPS

- 1. Draft assessment procedure
- 2. TRP input and revisions
- 3. Broader stakeholder input and revisions
 - In-person interviews or survey
- 4. Case study to refine procedure

TASK 3: RECOMMEND CONDITION STANDARDS (1/1/23 - 12/31/23)

- Include knowledge from previous tasks
- Collect input from Illinois stakeholders
 - Concurrent with Task 2 meetings

 Gather TRP input on minimum and ideal conditions standards

TASK 4: DEVELOP COMPANION PROCEDURES (7/1/23 - 5/31/24)

- Identify current IDOT asset management practices
- Consider signal management best practices
- Consider cost-recovery options
- Choose appropriate deliverable format
- Gather TRP input and refine

TASK ONE KEY FINDINGS

DO NO

BLOCK

- Condition Assessment and Standards
- Financial Awareness
- Asset Management

Assessing traffic signals' physical integrity and dependability

Common Practice: Performance Metrics to evaluate traffic signals

CONDITION ASSESSMENT AND STANDARDS

Condition Standards: Keep track of progress + Direct the resources

PERFORMANCE METRICS AND STANDARDS ESTABLISHED BY U.S. CITY & DOTS

Agency	Performance Measure	Criteria	Source		
City of Columbus, Ohio	Physical condition	Very Good, Good, Fair, and Poor	(Minnesota DOT, 2020)		
Portland, Oregon	Age	30-year life	(Portland Bureau of Transportation, 2017)		
Seattle DOT, Washington	Physical and Operational condition	Good, Fair, and Poor	(Seattle DOT, 2015)		

PERFORMANCE METRIC CONTINUED

Agency	Performance Measure	Performance Metric	Performan ce Target	Classification	Source	
Connecticut DOT	Age	Percentage of signals that are under 25 years (state of good repair - SOGR)	80%	Age > 25 years: Poor Age 16-25 years: Fair Age < 16: Good	(Connecticut DOT, 2019)	
Utah DOT	Electronics and Physical equipment condition obtained through an annual inspection	Percentage above poor condition	95%	Good, Average, or Poor	(Utah DOT, 2019)	
Minnesota DOT	Age	Percentage of signals that were past their 30-year useful life	2% or less		(Minnesota DOT, 2019)	
Colorado DOT	Physical Condition	Percentage of signal in severe condition	2% or less		(Colorado DOT, 2016)	
Washington State DOT	Frequency of repair	Number of repairs/years		A: One / 2 years B: One / year C: Two / year D: Three / year F: Four / year	(NCHRP, 2012)	
Virginia DOT	Physical Condition	General Condition Rating (GCR)		Good, Fair, Bad, Critical, and Failing	(Virginia DOT, 2021)	

PERFORMANCE ASSESSMENT

Frequently based on Age Shifting towards visual condition scores, asset age, and component level assessments, e.g. Connecticut DOT

OCK

Establish expected service life of components

EXPECTED LIFE OF SIGNAL COMPONENTS

Signal Component	Expected life, years (Source)						
	20 (San Jose DOT, 2010)						
	15 (Pennsylvania DOT, September 2020)						
	15 (Colorado DOT, 2016)						
	5-10 (Indiana DOT response, (Minnesota DOT, 2020))						
Signal	7 (Ontario Ministry of Transportation response, (Minnesota DOT, 2020))						
Controller	4-20, average 13.5 (Markow, 2008)						
	8.2 for the state, 9.6 for the County, 9.8 for the City/Municipality, with 9.4 as the						
	national average (National Operations Center of Excellence and Institute of						
	Transportation Engineers, 2019)						
	15 (Kloos & Bugas-Schramm, 2005)						
	20 (Indiana DOT response, (Minnesota DOT, 2020)						
Cabinet	15 (Indiana DOT response, (Minnesota DOT, 2020)						
	10-30, average 18 (Markow, 2008)						
	20 (Ontario Ministry of Transportation response, (Minnesota DOT, 2020))						

EXPECTED LIFE CONTINUED

MANUTATION OF AN ADDRESS OF A DESCRIPTION OF A DESCRIPTIO	
Signal Component	Expected life, years (Source)
	20 (Pennsylvania DOT, September 2020)
	30 (Colorado DOT, 2016)
	25 (Indiana DOT response, (Minnesota DOT, 2020))
Pole and Mast Arm	30 (Ontario Ministry of Transportation response, (Minnesota DOT, 2020))
	25 (Kloos & Bugas-Schramm, 2005)
	Tubular Steel: 10-50, average 24.6
	Tubular Aluminum: 20-35, average 24.3 (Markow, 2008)
	with a wooden pole: 2-30, average 15.1 (Markow, 2008)
	With steel pole:
Span Wire	2-30, average 15.1 (Markow, 2008)
	20 (Pennsylvania DOT, September 2020)
	with Concrete pole: 2-30, average 15.1 (Markow, 2008)
Troffic Signal Hoad	7-30, average 18.8 (Markow, 2008)
Traffic Signal Head	10 (Ontario Ministry of Transportation response, (Minnesota DOT, 2020))
Pedestrian Signal Head	15 (Markow, 2008)
AND A REAL FOR ANY AND A REAL FRAME AND A R	

EXPECTED LIFE CONTINUED

La

Signal Component	Expected life, years (Source)
	8-9 (Connecticut DOT, 2019)
amps (Light Emitting	5 (Ontario Ministry of Transportation response, (Minnesota DOT, 2020))
Diodes - LED)	5-10, average 7.2 (Markow, 2008)
Diodes - LED)	5 (Institute of Transportation Engineers and International Municipal
	Signal Association, 2010)

Signal Timing	3-5 (Michigan DOT, 2018)
	14 (Minnesota DOT, 2019)
Traffic Loop Detector	7.5 (Pennsylvania DOT, September 2020)
	3-20, average 8.6 (Markow, 2008)
	Fiber Optic, 20-30, average 23.6
Communication Cable	Twisted Copper, 10-30, average 17.5 (Markow, 2008)
	Fiber Optic, 20; Twisted Copper, 20
Cabinet Filter	1 (Minnesota DOT, 2019)
And the second se	The second se

DO NO

BLOCK

FINANCIAL AWARENESS

AIN

VALUATION OF EXISTING INFRASTRUCTURE

Replacement Value: Replaces the device using current market pricing

Condition-based Valuation: Replacement Value + Depreciation for wear

Example of Colorado DOT (2016 Dollar)

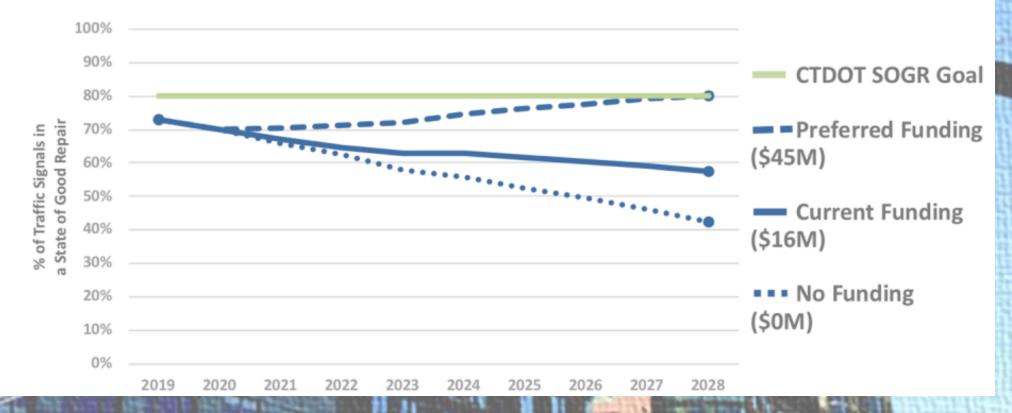
- Replacement value = \$962.52 million
- Percent value remaining = 54.1%
- Current value = \$520.71 million

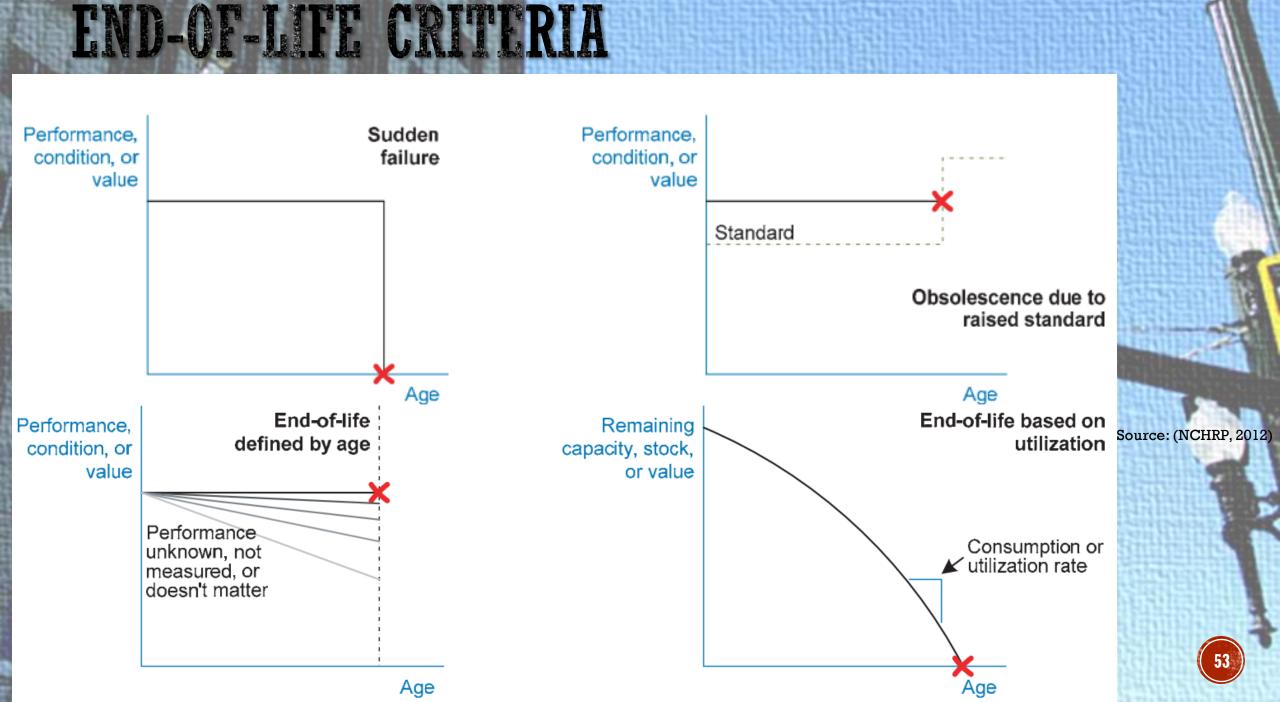
FUNDING NEEDED TO REACH DESIRED CONDITIONS

Performance gap: Present condition - State DOT condition standards

Information on funds required to reach the desired condition standard

plan for additional funds compared to current funding


Figure 1: Signal Performance Projections by Connecticut DOT at different funding le


Condition standard: 80 % of traffic signals in good repair

MPLE: CONNECTICUT DOT

 Funding needed: \$45 million per year (in 2019 Dollars) to replace and repair signals

State Goals by traffic signal for 2,777 traffic signals

Requires data collection on traffic signal components

PROACTIVE MAINTENANCE OF SIGNALS

Traffic Signal Asset Management Systems (TSAMS)

TSAMS advantages:

- increased staff awareness of traffic signal system failure
- improved asset prioritization,
- improvements to maintenance procedures,
- improvements to monitoring and reaction to failure

Typical TSAMS modules:

- Inventory Modules: History of removed components, snapshot of the existing components and subcomponents
- Maintenance Modules: what modifications were made, who made them, how they were made, and why they were made

AMS EXAMPLE: PENNDOT

Traffic Signal Asset Management System

WELCOME to PennDOT's Traffic Signal Asset Management System (TSAMS).

TSAMS is a web-based application for managing...

- Signal and Non-Signal Asset Inventories
 - Traffic Signals

Intersection Control Beacons

Ramp Meters

- Emergency Traffic Signals
- Electronic Signs
 - Rectangular Rapid Flashing Beacons School Zone Speed Limit Signs
- Flashing Warning Devices
- In-Roadway Warning Lights
- GIS Integration
- Maintenance Activity Tracking
- Signal and Non-Signal Systems Identification
- Approved Products Database
- Reporting & Advance Search

It is available **FREE** of cost to all stakeholders. If you are a new user click here for information on how to obtain access to TSAMS.

Login

- Registered TSAMS users 0
- **Returning Guest** 0
- First Time Guest

REGISTER

TSAMS

Quick Links

Release: 18.0

Copyright © 2022 Pennsylvania Department of Transportation. All Rights Reserved.

Fri, Nov 25, 2022 9:13:38 PM EST

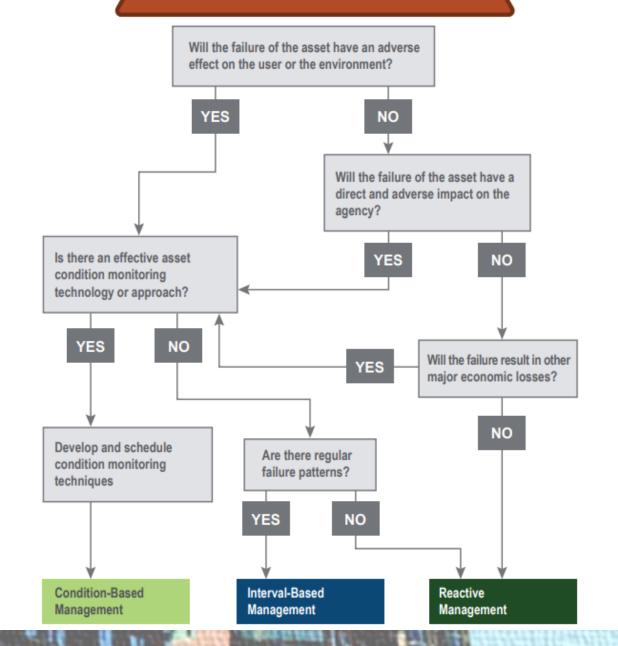
PennDOT Privacy Policy

RELIABILITY-CENTERED MANAGEMENT

Steps of RCM involve

Defining organization objectives
Identifying each component, and defining how and why each fails

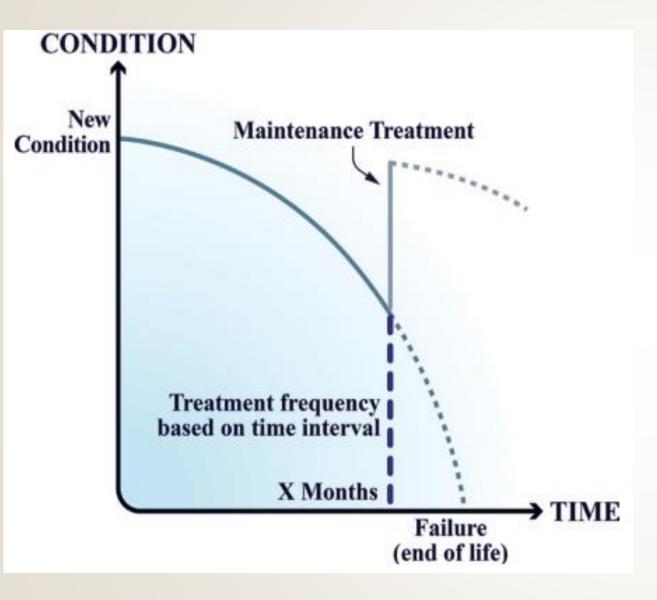
Three maintenance management strategies:


- Condition-Based Maintenance
- Interval-Based Maintenance
- Reactive Maintenance

Reliability-Centered Maintenance (RCM) Decision Tree

RCM EXAMPLE: VDOT


Interval-based strategy for traffic signal heads



57

CONDITION-BASED MANAGEMENT

- Life Expectancy Models and Deterioration Models are useful when components condition is based on components age
- Example: Weibull equation for survival probability of signal controllers

INTERVAL-BASED MAINTENANCE

Maintenance tasks are planned at predetermined intervals

REACTIVE MAINTENANCE

- Maintenance in reaction to events or reported asset failures
- Response interval: between notice and arrival of staff
- Repair Interval: during repairs
 - Temporary repair means or modes
 - Final repair or replacement

TASK ONE FINDINGS

TSAM is a deliberate and purposeful approach to managing, maintaining, and improving traffic signal physical resources.

Best management approach may differ by signal component

Need for a component-specific management plans varied deterioration rates of components different impact severity

Data collection is required to support TSAM decisions Baseline conditions Ranking of needs

Funding is vital to reaching system goals

TASK TWO UPDATES

- Divided system into key components Presenting draft assessment categories and methods to TRP
- Seeking input
 - Scope of regular assessments
 - Format of assessment data collection
 - Proposed assessment practices

ASSESSMENT TYPES

Annual condition assessment BLOCK Routine inspection Performance assessment Service inspection Initial inspection In-Depth inspection Trouble-shooting

MAIN

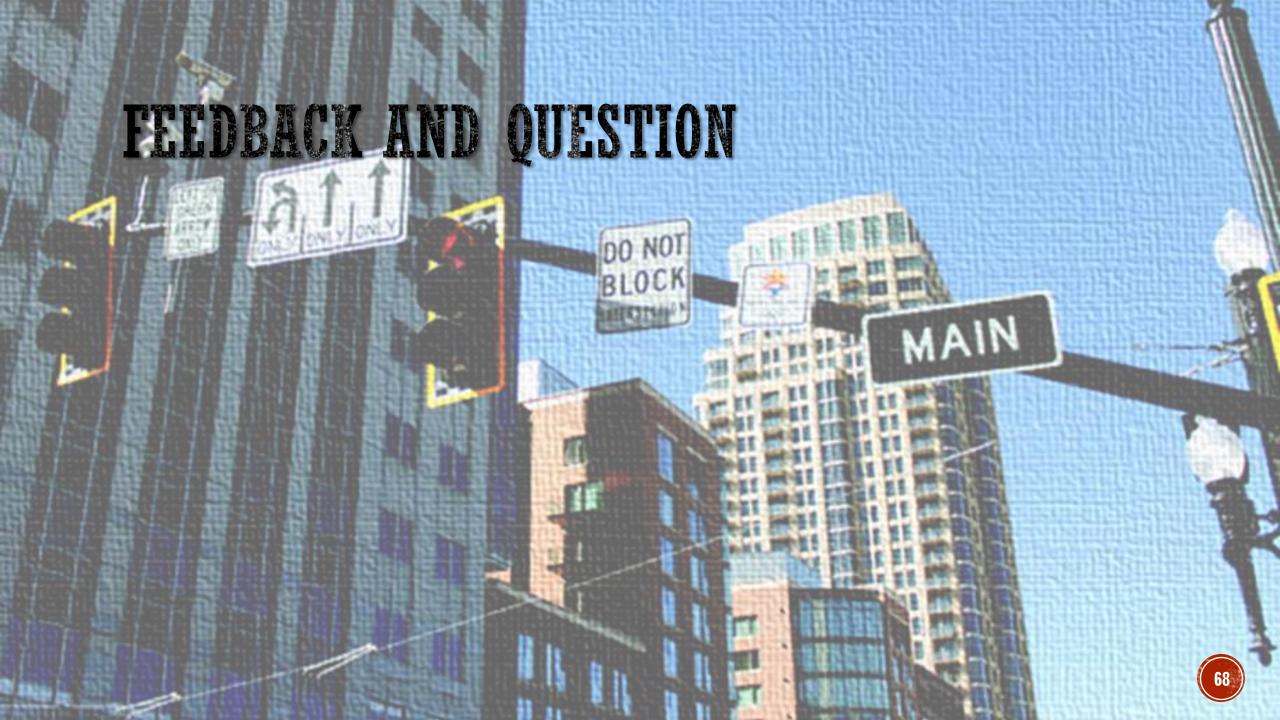
EXAMPLE ASSESSMENT PROCEDURE (1 OF 2)

					Inspection
Structure	What to Inspect	Reason	Procedure	Inspection Type	interval
Foundation				Annual condition	
9	Inspect foundations for damage (Cracking,	Prevent pole or	Inspect visible components of pole and cabinet foundations to	assessment/routine	
	Spalling, Reinforcement exposure)	cabinet failure	identify cracks, evidence of corrosion, and level of decay.	inspection	1
			Visually inspect the protective metal coating of all bases. Any	Annual condition	
	Coating condition (power-coating,		cracks or patches of missing coating can cause the underlying	assessment/routine	
	galvanization, paint)	Corrosion	metal to corrode. Check for signs of corrosion.	inspection	1
		Prevent		Annual condition	
			View storm water drains at pole bases to identify any	assessment/routine	
	Obstructions in the drain at the pole base		obstructions. If present, remove and note any standing water.	inspection	1
		morae the pole		Annual condition	
Base		Prevent	Visually inspect the grout or rodent screen to identify gaps.	assessment/routine	
	Grout or Rodent screen at pole bases	Infestation	Replace screen as necessary.	inspection	1
			Visually inspect for loose nuts and damage. Remove any debris,		
			and examine the anchor bolts for signs of bending, cracking,		
1			etc. Strike bolts with a hammer, listen for a ringing sound. If	Annual condition	
1		Anchor bolt	the sound is abnormal or lacks ringing (e.g. thud), check for	assessment/routine	
1	Anchor bolts	weathering	corrosion or concrete deterioration.	inspection	1
				Annual condition	
			Visually inspect junction boxes and handholes to identify	assessment/routine	
Junction Boxes and	Junction boxes and handholes	collection	missing or adjar covers and/or water intrusion problems.	inspection	1
Conduit				Annual condition	
	Presence of exposed conduit (that should be		Check that no conduit is visible (at or above grade), broken, or	assessment/routine	
	buried)	Protect conduit	damaged	inspection	1

EXAMPLE ASSESSMENT PROCEDURE (2 OF 2)

5						Inspection	
	Structure	What to Inspect	Reason	Procedure	Inspection Type	interval	
TOTAL D				Verify that leveling nuts are in a snug-tight condition with the bottom of the base plate. Snug-tight is defined as the full force of a person on a 1-inch wrench.	Annual condition assessment/routine inspection	1	
		Foundation and base plate connection	Prevent pole failure	Verify that a washer is present under each top nut to provide	Initial inspection		6
			>		Annual condition assessment/routine		
					inspection	1	
110					Annual condition		
			failure		assessment/routine inspection	1	2
f	Structural Connections		Prevent pole and mast arm	Visually confirm that the connection is tight with no visible gap between the connection or flange plates, bolts, nuts, and/or		at 15 years and at least every 5	÷
1		Bolted connections	failure		in-depth inspection	years thereafter	h
				Visually confirm there are no cracks in or near welds. Check the top and bottom of vertical connections for cracks. Look for			
B			Prevent pole	0 0	Annual condition		2
			and mast arm failure	Binoculars (or similar) should be used to view overhead structures.	assessment/routine inspection	1	g
B				Visually confirm there are no cracks in or near welds. Check the			1
			Prevent pole	top and bottom of vertical connections for cracks. Look for		at 15 years and at	
			and mast arm	bending or deformation of connection or surrounding area. A		least every 5	(
١.		Welded connections	failure	bucket truck (or similar) should be used to provide close access.	in-depth inspection	years thereafter	

65


EXAMPLE OF CONDITION RATING

		Inspection	Condition Rating, Score, and Description		A		
Structure	What to Inspect	interval	Best			Worst	11
Foundation	Inspect foundations for damage (Cracking,	Ъ.	Good, 1, no	Fair, 2, no cracks larger than 1/32" and no reinforcement	Poor, 3, crack larger than 1/16" and/or reinforcement damage/exposure, and/or efflorescence	Critical, 4, concrete chipped, exposing steel	
	Spalling, Reinforcement exposure) Coating condition (power-coating, galvanization, paint)		cracks Good, 1, no coating loss or corrosion	Fair, 2, some coating loss and/or minimal corrosion	Poor, 3, significant coating loss and/or corrosion that	reinforcement	
	Obstructions in the drain at the pole base	1	Good, 1, no obstructions	appears to	Poor 3, signs of saturation due to drainage issue		
Base	Grout or Rodent screen at pole bases		Good, 1, present and functioning	Fair, 2, present with minor		Critical, 4, screen missing	

Collect feedback and refine condition assessment procedures
 Draft and refine condition thresholds

Recommend companion procedures

NEXT STEPS

Next meetings

Stephen Zulkowski, Kane County Division of Transportation (Chair)

Our remaining meeting schedule for the year will be:

- Thursday, May 4, 2023 (9:30-11:30am)
- Thursday, August 3, 2023 (9:30-11:30am)
- Thursday, November 2, 2023 (9:30-11:30am)

6.0 Adjournment

Transportation Technology and Operations Coalition

Noah Harris nharris@cmap.illinois.gov

Aaron Brown abrown@cmap.illinois.gov

@cmapillinois | 🛩 f 💿 in

Thank you!

@cmapillinois | 🕑 f 💿 in