FOR NORTHEASTERN ILLINOIS
SYSTEM DEVELOPMENT PLAN
2010 TRANSPORTATION
NORTHEASTERN ILLINOIS PLANNING COMMISSION

In cooperation with

CHICAGO AREA TRANSPORTATION STUDY

Prepared by

TRANSPORTATION SYSTEM DEVELOPMENT PLAN

2010

JUNE 1990
The Regional Transportation Authority endorsed the plan for the six-county area. The plan was adopted by the following counties: Kane, Cook, DuPage, Will, McHenry, and Lake counties. This document is the Regional Transportation Study endorsed by the Chicago area on April 6, 1989.
Table of Contents

Introduction 1

Goals and Objectives 9

Background 3

Highway System Plan 15

Transit System Plan 29

Transportation Demand and System Management 41

Financial Considerations 45
The succeeding chapters are the HTML version of the plan. The plan describes improvements necessary to support the framework guiding the plan and the planning process. The conclusion chapter, goals and objectives, describes the public involvement portion of the plan. The planning process, and describes the economic forecasts and the technical analysis, discuss the 2010-2040 regional transportation plan.

The next chapter, background, gives a brief range description of the need for the Regional Transportation Plan. The next chapter, background, establishes the need for a Regional Transportation Plan for the region. This chapter, background, discusses the need for federal transportation funding and continues the region's efforts. The plan meets the region's need to develop a long-range transportation plan that identifies the highway and transit systems that meet federal and state requirements. The plan was primarily developed for the region.
The plan also recognizes that the per-

The plan to address traffic congestion

The purpose, rather, is to provide a

The system consists of roads

The plan does not pre-

The planning process should be made in a systematic and logical

The development of the rest of the

The final chapter in the document is

Financial Resources

with estimates of possible levels of

Financial Resources. Instead, the chapter

attentive to precede ways to generate

Financial Considerations. This section is

needs.

ration supply to meet anticipated future

items or increase the available transpor-
The committee directed the plan development
of the CACIS Program, the Regional Transportation Authority (RTA),
and the North Central Transportation Plan (NCTP). The
Committee also coordinated the development of
the joint jurisdictional transportation plans. The
CCTA Plan is the result of these efforts. The plan
was published in 1974. The plan is an
interagency agreement among the
CACIS, the RTA, and the NCTP.

The regional transportation planning process
involves the preparation of a
transportation plan, the
identification of transportation needs,
and the development of strategies to
meet those needs. The plan is
published every 5 years. The
most recent plan was published in
1998.
MPC Membership

<table>
<thead>
<tr>
<th>Category</th>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Power System</td>
<td>Appt. Commissioners of Public Utilities Commission of Chicago</td>
</tr>
<tr>
<td>Regional Transportation Authorities (RTA)</td>
<td>Cook County, Lake County, DuPage County, Kane County, McHenry County,</td>
</tr>
<tr>
<td></td>
<td>Chicago Mayor, Chicago City Council, Illinois Department of Transportation (DOT)</td>
</tr>
<tr>
<td>Illinois Toll Highway Authority (ITHA)</td>
<td>Appt. Commissioners of Metropolitan Toll Authority (MTO)</td>
</tr>
<tr>
<td>Urban Mass Transportation Administration (UMTA)</td>
<td>Appt. Commissioners of Suburban Bus Board (ACCE)</td>
</tr>
<tr>
<td>Federal Highway Administration (FHWA)</td>
<td>Appt. Commissioners of Metropolitan Highway Authority (MWA)</td>
</tr>
<tr>
<td>Metropolitan Water Reclamation District</td>
<td>Appt. Commissioners of Metropolitan Water Reclamation District</td>
</tr>
<tr>
<td>Chicago Park District</td>
<td>Appt. Commissioners of Chicago Park District</td>
</tr>
<tr>
<td>Metropolitan Transportation Providers</td>
<td>Appt. commissioners of Illinois Transportation Commission (MPC)</td>
</tr>
</tbody>
</table>

CTPS Policy Committee Membership

Figure 1
into account in this planning process. The regional forecasts have been taken into account in the growth areas, but not in all the regional residents. The needs of the regional population in 2010, the needs of the community, the needs of the community to those of the community, the needs of the community, the needs of the community. The 2010 economic activity will occur in the region, the 2010 economic activity will occur in the region, the 2010 economic growth which will occur in the region, the 2010 economic growth which will occur in the region.

The planning process must be concerned with proposals at various stages in the process. Proposals were made to evaluate the project, to evaluate the project. Computer simulations of the 2010 economic activity evaluated the addition of over 500,000 new residents. These forecasts were translated by CA15 into computer models which were used to calculate transportation and land uses.

The forecasts of 2010 socio-economic factors for Cook County and many of the region, the forecasts of 2010 socio-economic factors for Cook County and many of the region, the forecasts of 2010 socio-economic factors for Cook County and many of the region, the forecasts of 2010 socio-economic factors for Cook County and many of the region, the forecasts of 2010 socio-economic factors for Cook County and many of the region, the forecasts of 2010 socio-economic factors for Cook County and many of the region.
Employment Growth

<table>
<thead>
<tr>
<th>Area</th>
<th>Absolute Change</th>
<th>Percent Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>3,401.439</td>
<td>16.2%</td>
</tr>
<tr>
<td>METRO</td>
<td>1,178.439</td>
<td>12.6%</td>
</tr>
<tr>
<td>DOW</td>
<td>1,069.439</td>
<td>13.5%</td>
</tr>
<tr>
<td>SUB. COOK</td>
<td>239.386</td>
<td>19.6%</td>
</tr>
<tr>
<td>CHICAGO</td>
<td>1,000.000</td>
<td>0.0%</td>
</tr>
<tr>
<td>1980-2010</td>
<td>1,014,939</td>
<td>15.2%</td>
</tr>
</tbody>
</table>

Population

<table>
<thead>
<tr>
<th>Area</th>
<th>Absolute Change</th>
<th>Percent Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>3,401.439</td>
<td>16.2%</td>
</tr>
<tr>
<td>METRO</td>
<td>1,178.439</td>
<td>12.6%</td>
</tr>
<tr>
<td>DOW</td>
<td>1,069.439</td>
<td>13.5%</td>
</tr>
<tr>
<td>SUB. COOK</td>
<td>239.386</td>
<td>19.6%</td>
</tr>
<tr>
<td>CHICAGO</td>
<td>1,000.000</td>
<td>0.0%</td>
</tr>
<tr>
<td>1980-2010</td>
<td>1,014,939</td>
<td>15.2%</td>
</tr>
</tbody>
</table>

Source: NEPC Quarterly Forecast, October 1988, Forecast 1988-2010.
The initial round of public presentations and to other public interest groups.

PUBLIC INVOLVEMENT

will be conducted as appropriate.

will be developed and the 2010 T&D Plan will be developed the new socioeconomic forecasts. The study for the supplemental airport is conducted by ZIO and the site selection in service as soon as 2000. Once the air-

The Airport Capacity Policy Committee con- conducted that such an airport should be

Southwestern part of the region, the

northern Illinois and northeastern Indiana.

The States of Illinois and Indiana are

ALTERNATIVE SCENARIO
Recommends that the following criteria be the criteria for the selection of projects:

1. Alignment with the strategic plan
2. Potential for cost savings or revenue generation
3. Timeframe for project implementation
4. Evaluation of project impact on key performance indicators

Projects that meet these criteria will be presented to the executive committee for final approval. The committee will make the final decision on which projects to fund.

The committee will review the proposed projects and prioritize them based on the criteria above. The recommended projects will then be presented to the board of directors for approval.

Any project that does not meet the criteria will be considered for future funding opportunities. The review process will be transparent and open to public feedback.

The committee will work with the project teams to ensure that the projects are implemented on time and within budget. Regular progress reports will be submitted to the executive committee and the board of directors.

The committee will also consider the feedback from the projects and make adjustments as necessary. The feedback will be used to improve the selection process and ensure that the projects meet the organization's strategic goals.
GOALS AND OBJECTIVES

The region’s major employment centers

improve access to and distribution within
Central business districts
improve distribution within the Chicago
Metropolitan area.

Maintain the highest accessibility to and
needs.

Provide for pedestrian and bicycle travel

promote cost-effective alternatives to
the same mode.

Maximize opportunities to transfer
existing and new travel patterns.

Develop a system that responds to both
reliability

demand and congestion, security, safety and

Minimize traffic congestion.

Minimize travel times and costs.

OBJECTIVES

Develop transportation service in response to
their needs.

Supporting that goal are:

Each goal statement of objectives
is linked by a hierarchy of objectives

The goals stated at the top of the hierarchy
are:

GOALS

1. To improve transportation and all methods of

2. To ensure that all affected units of local

The decision-making process should

cently manage the transportation system.
portray objectives

OBJECTIVES:

1. Maximize the capacity of the existing system
2. Minimize the noise and vibration levels
3. Protect wetlands and watersheds from pollution and land use plans
4. Project environmentally sensitive lands
5. In response to possible equity shortages, use energy efficiently and in a sustainable manner
6. Promote long-term improvement in air quality
7. Minimize undesirable environmental impacts
8. Promote development of a transportation system which

Technical opportunities:

achieve access to open space and recreation

business.

facilitate the displacement of people and

traffic.

facilitate access to jobs and services

physical limitations.

ensure travel opportunities for no

promote sustainable social impacts

Development of a transportation system which

enhance the Chicago region's position as a major hub of national and international business opportunities in the region

provide transportation services that help

form economic development

Develop a transportation system which

GOAL:

GOAL:

GOAL:

GOAL:
Aggregate transportation flows in a way that promotes development and resuscitation of the land development process.

- Encourage local governments to link transportation system improvements with demand management policies, such as work trip reductions.
- Promote the desirability of minimizing the number of trips and the number of cars in use.
- Promote transportation development in the coordination of land use plans and intergovernmental cooperation.

- Maximize the region’s share of federal transportation funds.
- Consider appropriate investment decisions.
- Actively pursue funding to maintain the existing transportation infrastructure and reduce congestion in the vicinity of transportation service.

Objectives:

- Encourage land use planning and development.
- Provide public-private partnerships to develop alternative transportation systems.
- Develop transportation facilities that maximize the region’s share of federal transportation funds.
- Consider appropriate investment decisions.
- Actively pursue funding to maintain the existing transportation infrastructure and reduce congestion in the vicinity of transportation service.

Objectives:

- Encourage land use planning and development.
- Provide public-private partnerships to develop alternative transportation systems.
- Develop transportation facilities that maximize the region’s share of federal transportation funds.
- Consider appropriate investment decisions.
- Actively pursue funding to maintain the existing transportation infrastructure and reduce congestion in the vicinity of transportation service.

Objectives:
<table>
<thead>
<tr>
<th>TRANSPORTATION FACILITY DEVELOPMENT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of people and jobs displaced by</td>
<td></td>
</tr>
<tr>
<td>all jobs by transit</td>
<td></td>
</tr>
<tr>
<td>Percent of housing units in low income</td>
<td></td>
</tr>
<tr>
<td>Percent of households in low income</td>
<td></td>
</tr>
<tr>
<td>Percent of households within one hour of</td>
<td></td>
</tr>
<tr>
<td>Central Business District</td>
<td></td>
</tr>
<tr>
<td>Selected points within the Chicago</td>
<td></td>
</tr>
<tr>
<td>Average travel time of households to</td>
<td></td>
</tr>
<tr>
<td>Average travel time for all trips</td>
<td></td>
</tr>
<tr>
<td>Fifty percent of all jobs</td>
<td></td>
</tr>
<tr>
<td>Percent of households within one hour of</td>
<td></td>
</tr>
<tr>
<td>Vehicle miles of travel exceeding level</td>
<td></td>
</tr>
<tr>
<td>Average time per work trip</td>
<td></td>
</tr>
<tr>
<td>Average user cost per trip</td>
<td></td>
</tr>
<tr>
<td>Average time per work trip</td>
<td></td>
</tr>
<tr>
<td>Average time per trip</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NETWORK EVALUATION MEASURES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Formative of individual projects</td>
<td></td>
</tr>
<tr>
<td>To compare the overall performance of</td>
<td></td>
</tr>
<tr>
<td>measures shown in Table 2, were used</td>
<td></td>
</tr>
<tr>
<td>Components, Project measures, shown in</td>
<td></td>
</tr>
<tr>
<td>which includes both highway and transit</td>
<td></td>
</tr>
<tr>
<td>Alternative transportation networks</td>
<td></td>
</tr>
<tr>
<td>Network</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROJECT EVALUATION MEASURES

FIGURE 3

Vehicle miles of travel on project.
Average traffic volume.
Peak volume.
Daily traffic volume at highest volume.

For highway projects:

Area
Percent of route miles of the project
Land reduced by the project
Number of acres of prime agricultural
Acre
Silvage land appropriated by the project
Number of acres of environmentally sen-
Number of people and jobs displaced by
The transportation project
Number of people and jobs displaced by
Capital cost of project

For transit projects:

AM peak two hour maximum load point
Daily boardings
Volume.
The Lake County Land Use Objectives.

The proposed new expressways are:

Project Number 1
Lake-Wil Expressway South (P.P. 43).

Project Number 2
Lake-Wil Expressway North (P.P. 42).

The proposed new expressways are:

The major facility component is shown in Figure 4. The block lines on the map represent the existing and committed expressway system. Constructed, completed projects are depicted on the map. Changes to the projected facilities will be determined by specific project-specific detailed studies. The exact number and location of future lanes and other improvements will be determined in the detailed study. The exact number of future lanes and other improvements will be determined in the detailed study. The exact number of future lanes and other improvements will be determined in the detailed study.

MAJOR FACILITIES

The proposed new expressways are:

Project Number 1
Lake-Wil Expressway South (P.P. 43).

The proposed new expressways are:

Project Number 2
Lake-Wil Expressway North (P.P. 42).

The proposed new expressways are:

The major facility component is shown in Figure 4. The block lines on the map represent the existing and committed expressway system. Constructed, completed projects are depicted on the map. Changes to the projected facilities will be determined by specific project-specific detailed studies. The exact number and location of future lanes and other improvements will be determined in the detailed study. The exact number of future lanes and other improvements will be determined in the detailed study. The exact number of future lanes and other improvements will be determined in the detailed study.

MAJOR FACILITIES

The proposed new expressways are:

Project Number 1
Lake-Wil Expressway South (P.P. 43).

The proposed new expressways are:

Project Number 2
Lake-Wil Expressway North (P.P. 42).

The proposed new expressways are:
NOTE: Facility locations are general and do not represent alignments.

FIGURE 4

2010 EXPRESSWAY NETWORK

NEW EXPRESSWAY FACILITY
BASE EXPRESSWAY FACILITY
capital cost is estimated at $262 million. With a peak of 65 thousand vehicles, the
incremental volume projection for 2010 averages 66
trucks per hour. The daily traffic
airport. This project provides a
average, 1-79 south of the
Hershey Expressway to the west of the
route to the
is the
Expressway. The daily traffic
is 13,000 with a peak of 113
thousand vehicles. The capital cost is
route. The daily traffic
the outermost route to the
Expressway which is a major generator of heavy
traffic and some of the adjacent industrial
traffic and some of the adjacent industries.
Chicago Central Area for some through
traffic. This section could utilize existing property
on Western Avenue. The Expressway runs
through the residential (1-290) and
Expressway. The Expressway
would connect
Expressway. The Expressway
Project Number 3
Westerly Expressway

Project Number 4
Westerly Expressway Extension

Proj. No. 426 - Project Number 4
Westerly Expressway Extension

The project is being included in the plan.

[Diagram]

Resolution No. 68-3 (Appendix A)

[Text continues...]

[Diagram]

[Text continues...]
The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.

The capital cost is estimated at $335 million. The capital cost is estimated at $340 million.
NOTE: Facility locations are general and do not represent alignments.
<table>
<thead>
<tr>
<th>Road</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cook</td>
<td>I-294</td>
<td>Monroe-Seven Mile Road</td>
</tr>
<tr>
<td>Monroe</td>
<td>I-294</td>
<td>Lake Forest Drive</td>
</tr>
<tr>
<td>Forest Drive</td>
<td></td>
<td>Lake Monroe Road</td>
</tr>
<tr>
<td>Monroe</td>
<td>US 41</td>
<td>(South \n</td>
</tr>
<tr>
<td>Lake Monroe Line</td>
<td></td>
<td>Lake Monroe Line</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 49</td>
<td>(Lakeland Expwy.)</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 49</td>
<td>Will-Cook Line</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 31</td>
<td>Multiple \n</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 47</td>
<td>Hollywood Avenue</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 34</td>
<td>Ridge Road</td>
</tr>
<tr>
<td>Monroe</td>
<td>US 39</td>
<td>Kentucky Avenue</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 66</td>
<td>Highland Avenue</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 39</td>
<td>Bensenville Road</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 45</td>
<td>Parkview Parkway</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 30</td>
<td>Parkview Parkway</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 25</td>
<td>Bellmaw Rd</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 38</td>
<td>Western Avenue</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 27</td>
<td>Dixie Highway (Vicinity)</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 20</td>
<td>County Line Road</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 120</td>
<td>County \n</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 7</td>
<td>Chicago Street</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 49</td>
<td>North Ave.</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 83</td>
<td>Multiple Line</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 20</td>
<td>St. Louis Ave.</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 62</td>
<td>Frontage Road</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 79</td>
<td>Frontage Road</td>
</tr>
<tr>
<td>Monroe</td>
<td>IL 83</td>
<td>Monroe Drive</td>
</tr>
<tr>
<td>Monroe</td>
<td>I-25</td>
<td>Monroe Drive</td>
</tr>
<tr>
<td>Monroe</td>
<td>I-309</td>
<td>Foremost Avenue</td>
</tr>
<tr>
<td>Monroe</td>
<td>I-90</td>
<td>Lotus Avenue</td>
</tr>
</tbody>
</table>

Strategic Regional Arterial System List

Figure 7
An acceptable route. The county and municipality should work together to find
an acceptable route. The county and municipality should work together to find
continuous route in this area. Il is recognized that under should be a
North Ave, and I-35 receent road. Il is recognized that under should be a
route, Northlake and Northwest roads an easier road. And a gap between I-94
resemble the north-south regional arterial in Dupage County which includes sections of
I-94 Avenue/Cumbeland and Il 43 (Harlem) between 1-90 (Kennedy) and I-55 (Stevenson)
are both included as strategic regional arterials. Subsequent studies will determine if one
arterial, or a combination of both routes should remain on the system.

Attachments are considered to be the overall system to serve regional traffic.

Notes:

<table>
<thead>
<tr>
<th>County</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kane</td>
<td>I-294</td>
<td>I-355</td>
</tr>
<tr>
<td>Kane</td>
<td>I-80</td>
<td>I-290</td>
</tr>
<tr>
<td>Kane</td>
<td>US 30 (Kennedy)</td>
<td>I-290</td>
</tr>
<tr>
<td>Kane</td>
<td>I-290</td>
<td>US 30 (Kennedy)</td>
</tr>
<tr>
<td>Kane</td>
<td>I-290</td>
<td>I-80</td>
</tr>
<tr>
<td>Kane</td>
<td>FAP 426</td>
<td>I-290</td>
</tr>
<tr>
<td>Kane</td>
<td>I-290</td>
<td>US 30 (Kennedy)</td>
</tr>
<tr>
<td>Kane</td>
<td>I-80</td>
<td>US 30 (Kennedy)</td>
</tr>
<tr>
<td>Kane</td>
<td>I-80</td>
<td>I-290</td>
</tr>
<tr>
<td>Kane</td>
<td>FAP 426</td>
<td>I-80</td>
</tr>
<tr>
<td>Kane</td>
<td>I-80</td>
<td>US 30 (Kennedy)</td>
</tr>
<tr>
<td>Kane</td>
<td>US 30 (Kennedy)</td>
<td>I-80</td>
</tr>
<tr>
<td>Kane</td>
<td>I-290</td>
<td>US 30 (Kennedy)</td>
</tr>
<tr>
<td>Kane</td>
<td>I-290</td>
<td>I-80</td>
</tr>
<tr>
<td>Kane</td>
<td>FAP 426</td>
<td>I-290</td>
</tr>
<tr>
<td>Kane</td>
<td>I-290</td>
<td>US 30 (Kennedy)</td>
</tr>
<tr>
<td>Kane</td>
<td>I-80</td>
<td>US 30 (Kennedy)</td>
</tr>
<tr>
<td>Kane</td>
<td>I-80</td>
<td>I-290</td>
</tr>
<tr>
<td>Kane</td>
<td>FAP 426</td>
<td>I-80</td>
</tr>
<tr>
<td>Kane</td>
<td>I-80</td>
<td>US 30 (Kennedy)</td>
</tr>
<tr>
<td>Kane</td>
<td>US 30 (Kennedy)</td>
<td>I-80</td>
</tr>
</tbody>
</table>
CORRIDORS OF THE FUTURE

...
The agricultural nature of this corridor is the primary focus of this project should focus on the agricultural economy and the surrounding rural communities.

The proposed project would include the development of a new interchange at the right-of-way for the proposed expressway. This interchange would provide access to the proposed expressway for the residents and businesses in the area. The project would also include the construction of a new bridge and the improvement of existing roads.

Project D

Richmond-Waukegan Expressway (IL 170) Extension

The South Suburban Expressway system is the primary focus of this project. The project would include the construction of a new interchange at the right-of-way for the proposed expressway. This interchange would provide access to the proposed expressway for the residents and businesses in the area.

Project C

Calumet Expressway (IL 394) Extension

Illinois Natural Landmark

The proposed expressway would bypass the National Historic District of Calumet City, providing access to the proposed expressway for the residents and businesses in the area. The project would also include the construction of a new interchange at the right-of-way for the proposed expressway.
Future planning efforts.

HOV proposals should be considered in section of the HOV concept. Projecting plans does not imply a commitment to the plan. The lack of any HOV lanes in the expressways located on the southeast of the phenom the entire network with all these expressways corridor. In the development of the right-of-way for this facility, the corridor study was to provide an alternative for the construction of the right-of-way for this facility would run from the north to the south, through the counties of DuPage, Cook, and Kane. It was found that the facility could be extended to the north by extending the corridor through western Illinois. The facility would run from the north to the south, through the counties of DuPage, Cook, and Kane.
Table 2 shows the projected growth in demand and capacity to accommodate the city's growth. The current system cannot handle the growth, and a new transit system is needed to accommodate the future needs. The system expansion plan needs to be addressed by the transit authorities in the region. The growth and change in the population will require a larger system to accommodate the needs of the area. Therefore, a new transit system is needed to serve the expanding needs of the community.
of the important market, access to areas to protect and enhance transportation share of the fastest and strongest market. In order to prevent and continue the current situation, the CBD distribution pattern is consistent and will continue to be transmitted. A number of CBDs created to compete for transportation and to meet the demands of the CBDs created to be the most attractive. The current's potential is a pro-

The second group consists of pro-

The second group consists of pro-

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern. The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern. The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.

The core issue is the existing and continuing decision on which system will represent the CBD's distribution pattern.
The incidence of allergic reactions to chemotherapy and rapid transit is generally low and remains relatively consistent across different centers. A number of factors, however, can influence the occurrence of these reactions. These factors include patient characteristics, such as age and sex, as well as the dosage and duration of the chemotherapy regimen. Furthermore, the type of chemotherapy administered, with some agents known to induce more frequent reactions, also plays a significant role.

The study included a comprehensive analysis of patient records, focusing on the incidence and severity of allergic reactions to chemotherapy. The results showed a significant reduction in the number of reactions when certain precautions were implemented, such as the use of premedication and the careful monitoring of patients.

Future research is recommended to further investigate the factors influencing the incidence of allergic reactions and to develop strategies for preventing these events in clinical practice.
NOTE: Facility locations are general and do not represent alignments.
The proposed linear park concept, along the waterfront, would provide a linear park, greenway, and pedestrian path along the waterfront. This park would be a significant element in the development of the waterfront and a major connector between the city center and downtown

The project is a mixed-use, multi-modal development that will provide a variety of uses, including retail, office, residential, and recreational. The project is expected to bring significant economic benefits to the local economy and create jobs. The project is estimated to cost $273 million.
NOTE: Facility locations are general and do not represent alignments.
The Milwaukee region has a unique and underutilized potential for short-range, high-speed, non-CBD work trips. A modestly priced, very-high-speed rail system would provide a lower cost alternative toube journeys, while maintaining a higher level of service. This system could also serve as a model for future high-speed rail systems throughout the Midwest.

The proposed system would consist of three main corridors:

1. **Northwest Corridor**: This corridor would connect the northwestern suburbs of Milwaukee with the central business district (CBD) and downtown. It would include extensions to Wauwatosa, West Allis, and the suburbs.

2. **East-West Corridor**: This corridor would connect the east and west sides of Milwaukee, including Oak Creek and Waukesha.

3. **Southwest Corridor**: This corridor would connect the southwest suburbs with the CBD, including Greenfield and Franklin.

The system would be supported by a dedicated right-of-way, with stations located at key points along the corridors. The system would operate on a limited-stop service, with frequencies up to 15 minutes during peak periods.

Construction:

The construction phase is estimated to cost approximately $2.5 billion. This includes the acquisition of right-of-way, construction of new stations, and upgrading existing infrastructure.

Operations:

The operations phase is estimated to cost approximately $1.5 billion. This includes the purchase of new rail vehicles and the implementation of a new operations and maintenance system.

Conclusion:

The proposed high-speed rail system offers a significant opportunity to improve transportation options in the Milwaukee region. With its potential to reduce commute times, improve accessibility, and support economic development, this project is a valuable investment for the region.
prove the project's attractiveness.

Create a new development of the lake

many weaknesses in its high capital cost.

is primary of CBD

Improving access for residents

This project is a three-mile extension of

Project C

Skokie-O'Hare Connector (Project B).
The performance of this project is

Improving access for residents

This project is an eight-mile extension of

Project F

Skokie Swift Extension

destinations.

the work trips carried out to non-CBD

vice, performed well with two-thirds of

the, tested with a higher level of ser-

reverse community opportunities. The

Impede accessibility to non-CBD

The project would extend the Chern

Project A

Skokie-O'Hare Connector

Occupancy Vehicle (HOV) Facility.

for pedestrian use as a transfer to higher

Highway right-of-way is being preserved.

growth residential area to the west.

20 mile line from Belden to O'Hare

Project D

O'Hare (Thomson)
RIDE SHARING

Ride sharing is a service that allows riders to share a ride with others in the same vehicle. This can help reduce congestion and pollution, as well as save money for riders. Ride sharing services are typically available through smartphone apps, and allow riders to book a ride with others who are traveling in the same direction. This can be a cost-effective and convenient way to travel, especially for short trips or occasional use.
TRANSPORTATION MANAGEMENT

You traffic.

Your gallery or later to help avoid peak

hours. To adjust from 15 minutes to an

on-road and separated bikeways.

...Bolders against loop detours and

pothole-sprouting loop detours. a

various warning signs. Bridge and

}n the cases of traffic at intersections –

other strategies to increase the-

acids use include: Pool more cars
during the peak of shoulder without

walking of the outside travel lane or

where. One of these strategies is the

another accommodative strategies on road-

various strategies can be incorporated to

that and finding must focus on this mode.

?

license, the transportation system were

jobs, the transportation system is not

the right way to work and for other pu-

northwestern Illinois. Many drivers used a

separate freeway. Therefore, they are in excess

proportion. Alternative transportation is not

by reducing the number of cars and

BICYCLE USE

with legislatively solutions to transpor-

possible for modelhome and encroach-

that. Those groups could also be to-

the transportation management assoc.

more technologies and hence technologies

support transportation demand manage-

ensures local legislation could be passed to

create and support people about transportation

we could be implemented with the help of

various organizations to address problems

that ensure a local level. These

collectively will know. They

bridge areas. Such systems allow public

volunteers and retailers in the same geo-

solutions may be useful in some cases. We

in order that some of the techniques

ASSOCIATIONS

you traffic.

you gallery or later to help avoid peak

hours. To adjust from 15 minutes to an

on-road and separated bikeways.
Traffic Engineering Tools

Policies and Programs

Traffic engineering tools are essential for managing traffic flow and congestion in cities. These tools include traffic signals, traffic signs, and traffic management systems. The effectiveness of these tools can vary depending on the specific needs of the area. For example, traffic signals can be used to regulate traffic flow at intersections, while traffic signs can be used to provide information to drivers. Traffic management systems can be used to monitor traffic conditions and provide real-time data to law enforcement and other agencies.

Transportation

Transportation planning is a critical component of traffic engineering. This process involves identifying transportation needs, developing transportation plans, and implementing those plans. Transportation planning should take into account the needs of all users, including pedestrians, cyclists, and drivers. It is important to consider the impacts of transportation decisions on the environment, public health, and economic development.
No specific transit fare recommendations are made in this plan. Development of such recommendations would have to be based on consideration of the complex financial and operational aspects of alternative fare structures. The test results do, however, highlight the need to consider fare structure changes as transit seeks to serve the region's changing travel patterns.

INFORMATION PROGRAMS
Information provided to the transportation system user must be as current as possible. Continued close working relationships with traffic reporting systems and consumer information programs should be maintained and expanded. Use of highway advisory radio, electronic information signs and transit platform and vehicle communications programs are all positive in managing the flow of people and vehicles.

ACTIVE MANAGEMENT OF MAJOR CONSTRUCTION PROJECTS
The region faces the problem of a system which is mature and in need of maintenance and reconstruction. Active management programs aimed at reducing trip making and providing alternatives during construction should continue to be implemented. The skills of professionals in public relations, law enforcement, incident management, traffic engineering, transit planning and construction must all be present.
required to implement the current public mass transit plans. An additional need for advanced technologies calls for the development of new methods and the implementation of current plans. The cost of traffic congestion and the loss of productivity, as well as the cost of maintaining the infrastructure, is estimated to be at least $10 billion in 1987 dollars.

The cost to maintain the infrastructure is estimated to be $10 billion in 1987 dollars. The cost to build new facilities and expand the existing system will be substantial. The cost to build new facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.

The cost of building new facilities and expanding existing facilities includes the cost of land acquisition, design, construction, and testing. The cost to expand existing facilities includes upgrading existing facilities, expanding existing facilities, and constructing new facilities. The cost of constructing new facilities includes salaries, benefits, materials, and equipment. The cost of upgrading existing facilities includes salaries, benefits, materials, and equipment.
FINANCIAL FORECASTS

The cost of the new major safety improvements is estimated to be $4.9 billion. This includes the major new facilities in the Penta system including new safety improvements and highway expansion. The Penta system is based on a future level of peak rates that will be required by the future level of needs derived from future demand. The capacity of the system is based on a future level of peak rates that will be required by the future level of needs derived from future demand. The capacity of the system is based on a future level of peak rates that will be required by the future level of needs derived from future demand.
the system as identified in this plan.

Even the most optimistic scenario on

that will need to be considered.

direct use focus (follow) as an option

strategic major new facilities with

realistic option. The option of the

system is not a part of the existing system is not a

sustainable condition. Abandoned

versus the need to maintain the California

important to all regions. The desire to provide

concern the desire to provide facilities

Over the last several years.

regions, capital transportation programs

reduction in the capital investment. This is what has been done in the

needs will have to be made. This in

transportation planning. In order to

the severe financial program that the

in the previous section. In all par

ways there would not be enough money

the most optimistic scenario for higher-

the severe financial programs with the costs

Figure 4 presents a comparison of the

FUTURE FORECASTS

case. On the transp side this was still not the

that was adequate to cover the needs.

This forecast resulted in a dollar level

on the highway side could be costing. On the highway side

was a reasonable level for
generation. This forecast attempt to answer the

in a different philosophy. A third forecast was

estimated needs. A third forecast was

this forecast of resources is well short of

list for both the transit and highway needs

new funding from traditional sources. This

certain federal programs and the addition of

forecasts reflect the recognition of

forecasts from traditional sources. This

future of historical trends for financial

saves costs and optimists expect that

ten would provide considerably de-

realized, our future transportation sys-

whether than this forecast were actually

TABLE 4

|---------------------------------|-----:|-----:|-----:|-----:|
| Motor Vehicle Forecast | 52.0| 55.0| 58.0| 61.0|
| Non-Motor Vehicle Forecast | 8.00| 9.00| 10.0| 11.0|
| Public Transportation Forecast | 4.00| 5.00| 6.00| 7.00|

(\$ in millions of 1978 dollars for the period 1990 to 2000)
RESOLUTION NO. 89-3

NORTHEASTERN ILLINOIS PLANNING COMMISSION

APPENDIX A
This resolution adopted this 16th of May, 1989.

Plan.

consistent with the Year 2010 Transportation System Development
construction of the expressway facility as proposed is not
failure of the commission to approve will signify that

location, design, and the design characteristics, including interchange
jurisdictional boundaries, environmental regulations
intergovernmental agreements, and partitioning of future land
authority over property within a distance corridor of 1/2 mile
process, involving all agencies with zoning/land use

Development of an intergovernmental land use planning