

Conservation Pricing

Presentation to the NE IL RWSPG March 25, 2008

Hala A. Ahmed, AICP

Presentation Content

- Water Pricing
 - Background
 - Water Prices in US Cities
- Water Rate Structures (WRS)
 - Definition, Types, Design
- Conservation Pricing (CP)
 - When WRS promotes conservation result is CP
 - CP & WRS: conservation goals, evaluation
 - What the region does
 - What others do
- Recommendations

Water Supply Planning

Includes:

- Amount of additional water to develop
- Timing and cost of development
- Design, financial and legal issues

Water Pricing

 Historically, water has been under-priced to foster objectives of public health & safety, and economic development

Water Pricing (contin.)

- Price that Municipal Water Utilities charge their customers.
- Costs cover:
 - Utility O & M
 - Costs to procure & develop additional water supplies to meet growing demands
 - Social & environmental opportunity costs of losing other benefits of the water & natural waterways, e.g. ecological & recreational values of river basins

Utility Total Budget (I)

Total Budget Cost to
Provide
Current Water
Service

+

Cost of Long
Term Planning
(Demand &
Supply Mngmnt)

Key Points (Part I)

Water Utilities are designed to meet the maximum/peak demand

It is in the best interests of utilities to reduce/manage this peak demand to reduce investment in capital assets

Demand Management can be achieved by Water Conservation- a cost effective substitute for water supply development

Water Prices in US Cities (\$/10,000 gallons)

Source: Water Demand & Planning Report- Twin Cities MN; May 2004

Water Rate Structures (WRS)

- Made up of 2 charges:
 - Service Charge: fixed service fee per billing period regardless of consumption level
 - Consumption/Commodity
 Charge: price for each unit of water consumed
- Utilities decide what to achieve, promote or discourage with WRS

Utility Total Budget (II)

Rate-setting Objectives

- Revenue Sufficiency/Adequacy: cost recovery
- Net Revenue Stability: for contingencies
- Rate Stability: continuity
- Equity and Fairness: cost of service
- Affordability: the 4% rule
- Efficiency & Conservation: wise use
- Political Acceptability: "offsetting squack"
- Demand Reduction & Cost Deferral: postponement
- Others: ease, simplicity, legality

WRS Types: Decreasing Block Rate

Source: Evaluation of Water Ratemaking Practices and Rate Structure Complexity in Illinois Water Systems. 2004. J. Kiefer. Doctoral dissertation. Copyright 2004, Jack C. Kiefer.

Uniform Rate

Source: Kiefer, J. (2004)

Increasing Block Rate

Source: Kiefer, J. (2004)

Seasonal Block Rate

Source: Kiefer, J. (2004)

Conservation Pricing

- AWWA stated that Conservation Pricing is among the best management practices for urban water conservation
- Concerns the elimination of non-conserving pricing policies & adoption of a structure that provides incentives to customers to reduce average or peak usage and use surcharges to encourage conservation

Conservation Pricing & WRS

- Utility's Perspective
 - Revenue requirement, ROI, Long-term Planning
- Customer's Perspective
 - Equitable, Affordable, Understandable
- Society's Perspective
 - Economic Efficiency, Resource Conservation, Priority Uses of Water, "Just & Reasonable"

Key Points (Part II)

- Customers determine quantity of service utility must provide
- Water Customers react to water prices
 - Restrictions in water use reduce demand
 - Lower water rates tend to produce higher per capita use
- Benefits of conservation = avoided costs of H2O development
- Avoided cost is present value of new H2O project without conservation less present value of project with conservation

Avoided Cost Savings- Example

 If a water supply project that costs \$200,000/year to operate is delayed by 6 years:

Savings = \$5.8 million

Avoided Cost Savings- Example

Marginal Cost & Variable Rate Structure

Basic Rate Structure: $Bill_{n,t} = F + p \times w_{n,t}$

More Elaborate: $Bill_{n,t} = F + p_1 \times w_{n,t} + p_2 \times (\Delta w_{n,t})$

Bill_{n t}: water bill of nth customer in month t

F: fixed charge

p: water rate (varies with amount of water use

p₁: current costs per 1,000 gallons of water used

p₂: avoided costs per 1,000 gallons associated w/reduced water use

 $w_{n,t}$: water use of nth customer in month t

 $\Delta w_{n,t}$: water use- meant to approximate discretionary water use

Avoided Costs

- Included in rate structures
- Can be placed in a trust account to fund:
 - conservation programs that allow for plant delay and
 - capital investments as needed

WRS Effectiveness In CP

- Fixed Service Charge
- Price Sensitivity
- Billing Frequency & Ease of Communication

CP Benefits for Utilities

Water Utility	Pop Served	Net Benefit	
Massachusetts Water Resources Authority	2,200,000	\$111- 153 mil	
Houston, TX	1,700,000	\$262 mil	
Albuquerque, NM	483,000	Avoided water shortages	
Irvine Ranch, CA	150,000	\$28.2 mil	
Santa Monica, CA	85,000	\$9.5 mil	
Cary, NC	80,000	Delayed 2 plant expansions by 2 years	
Ashland, OR	20,000	\$6.9- 10.1 mil	
Gallitzin, PA	2,000	\$25,000/year	

Source: USEPA, Cases in Water Conservation, July 2002.

CP* Benefits for Individuals

Water Utility	Pop Served	Net Benefit Per Person#
Massachusetts Water Resources Authority	2,200,000	\$50- \$70
Houston, TX	1,700,000	\$154
Irvine Ranch, CA	150,000	\$188
Santa Monica, CA	85,000	\$112
Ashland, OR	20,000	\$345
Gallitzin, PA	2,000	\$13

^{*}CP is included with other conservation programs e.g. public education & information #Benefit varies with utility

Source: USEPA, 2002.

WRS in NE IL Communities (Lake Michigan-served Communities

Source: Lake Michigan Water Survey- IL Dept. of Natural Resources; July 2005

WRS in Minnesota

1993: Amendments to MN statute requiring water suppliers to employ wateruse demand reduction measures including evaluation of a conservation rate structure.

Graph 5 Metropolitan Area Water Pricing Structures

Source: Water Demand & Planning Report- Twin Cities MN; May 2004

WRS in Minnesota

 \blacksquare Uniform \blacksquare Decreasing \blacksquare Increasing \blacksquare Mixed

Source: Water Demand & Planning Report- Twin Cities MN; May 2004

WRS in Utah

□ Seasonal/Increasing ■ Increasing ■ Uniform

Source: Water Rate Structure in Utah-Western Resource Advocates; January 2005.

Conclusions

- CP gives the customer the option to choose the amount of water based on willingness to pay
- CP can result in delaying the development of new infrastructure to meet increasing demands
- Savings from CP are significant to both water utilities and customers

Recommendations- General

- NE IL communities/utilities should review their WRS to decide whether rates reflect the cost of water use
- Communities should study the modification of WRS to include CP in rate setting
- Public involvement should be solicited in any future rate setting that includes CP
- A strong public information campaign should insure that residents understand that CP is beneficial to them individually and to the community as a whole

Recommendations- General

 Combine and implement CP with other water conservation tools such as regulatory mechanisms (watering policies, erosion & sediment control, water conservation ordinances, native planting) and education programs.

Recommendations-Specific

Tier I- State:

 Review utility water rates and recommend the inclusion of Conservation Pricing within rate structure

Tier II- Regional:

- Provide Technical Assistance for utilities with various conservation programs
- Tier III- Water Utilities:
 - Model WRS to reflect regional goals and objectives as well as satisfy local revenue requirements

Questions for RWSPG

- Does CP serve conservation purposes?
- Do you agree that CP reduces costs?
- Will CP be a sustainable measure for water supply planning?
- Would the region benefit from CP policies?
- Should CP be a recommendation in the Plan for efficient water use?

Other Questions?

Thank you.

Hala A. Ahmed, AICP hahmed@cmap.illinois.gov (312) 386-8800

