Pueblo Colorado MPO Travel Model

CHICAGO AREA MODEL USERS GROUP DECEMBER 6, 2017

Mary Lupa, WSP Matt Stratton, WSP Carlee Clymer, WSP Maureen Paz de Araujo, Wilson & Co.

Outline of the Presentation

- u A look at Pueblo
- Four-step model framework.
- u TAZ and highway network
- Forecasting the socioeconomic data.
- Straightforward "dashboard" type model with quick learning curve.
- Model work completed in one year including model development, future year scenario, methodology and user guide.
- Framework for the integration of emerging Colorado statewide model components to the PACOG model.

Front Range of Colorado

4

Map of Pueblo Colorado (Terrain)

Altitude: 4,692 feet

Arkansas River (W to E) runs through Pueblo

Overview of PACOG Region

- u Population of 165,000 persons in 2016.
- u The MPO is Pueblo Area Council of Governments (PACOG)
- u The MPO extent is 2,400 square miles all of Pueblo County

Pueblo Colorado PACOG Model

- u 214 TAZ
- Used the Front Range Household Survey 2010
- u Trip Generation cross classified Household size (5 categories by income (4 categories).
- Trip Distribution gravity model using congested time for eight purposes: H-W, H-Shop, H-Other, NHB-O, NHB-W, H-Elementary /Middle School, H-High School, H-College University.
- Mode Choice auto-driven, no transit network or skims. Uses auto occupancy from the HHTS.
- Assignment standard equilibrium assignment with BPR function based on time 100 global iteration maximum and a global convergence criteria of .001 on link segment time.

Four-step model framework.

Map of Pueblo Colorado (TAZ)

Highway Network

- Six functional classifications + centroid connectors
- Attributes include
 FC, area type, # of
 lanes, posted
 speed, congested
 speed, capacity,
 AADT

Front Range household survey

- u Collected in 2010
- u 989 households collected
- u Used to prepare cross classification trip generation rates for by size and income
- Used to calibrate trip distribution

Forecasting the SE data

PACOG provided significant assistance

- Prepared the ACS (U.S. Census) conversion to PACOG TAZ system for 2010
- U Obtained and cleaned the employment data Colorado 2010 Quarterly Census of Employment & Wages (QCEW) and used this point data to establish 2010 employment at the zonal level in the study area.
- u Conducted all the forecast work including getting buy-in from regional leadership and citizen base.

Employment Category	NAICS Range
BASIC	<= 425120
RETAIL	441110 - 454390
SERVICE	481111 - 814110
GOVERNMENT	> 814110

Approach to transit, trucks and time of day periods

- u Transit used bus stops per TAZ as a surrogate for transit use; applied a .997 to .999 factor to person trips for TAZs with at least one bus stop.
- Trucks included in the trip generation and distribution step, unvalidated.
- Three time periods: 1 hour AM, one hour PM, 22 hour off peak

Approach to externals

Software

- Historically (1970s) the PACOG model was UTPS
- u By the 1980s it migrated to MinUTP
- Converted to TransCAD by 2002 with Fortran call for trip generation
- Latest update inserted TransCAD module for trip generation.

TransCAD Version 6.0 used

Screenline with validation

All highway links with validation

Volume Range (Two-Way)	Volume Range ID	Number of Observations	VMT Comparison				% Root
			Observed VMT	Model VMT	Difference	% Difference	Mean Square Error
Less than 5,000	1	173	195,486	220,050	24,564	12.6%	127
5,000-10,000	2	118	262,499	266,895	4,396	1.7%	125
10,000-20,000	3	94	508,338	490,152	(18,186)	-3.6%	29
20,000-30,000	4	35	202,893	180,735	(22,158)	-10.9%	16
30,000-40,000	5	11	76,959	58,453	(18,506)	-24.0%	27
40,000-50,000	6	4	32,015	28,774	(3,241)	-10.1%	13
Total	Total	435	1,278,190	1,245,059	(33,131)	-2.6%	64

Straightforward "dashboard" type model with quick learning curve

GUI with 4 tabs, scenario builder, model step breakout, ability to look at SE data, & parameter settings

Maps and reports feature – generate and save

Model needed for Long Range

Planning

Timeline of model developments

Kickoff

April 2014

- HH survey ready
- previous model at hand
- work plan in place for team

Problem Solving

August 2014

- network capacity calculation
- employment data cleaning
- traffic count collection & prep

2010 validation and 2040 NB complete April 2015 LRP drafted Summer 2015, completed December 2015

Summary

- u "Right-sized" models are of high value to small and medium sized MPOs.
- Add detail where the MPO needs it: TAZ resolution, excellent SAF and employment data cleaning, good network assignment visuals.
- Budget and schedule are manageable.
- Staying with a standard four-step model structure provides ease in set-up and completion
 - Well-studied components.
 - National targets for guidance