Transit Trends

Exploring transit use and investment
Transit Trends

Exploring transit use and investment

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>About the Transit Trends snapshot</td>
</tr>
<tr>
<td>8</td>
<td>Transit use</td>
</tr>
<tr>
<td></td>
<td>Regional goals</td>
</tr>
<tr>
<td></td>
<td>Progress toward goals</td>
</tr>
<tr>
<td></td>
<td>Growth of demand-response transit</td>
</tr>
<tr>
<td></td>
<td>Commutes</td>
</tr>
<tr>
<td>34</td>
<td>Transit fundamentals</td>
</tr>
<tr>
<td></td>
<td>Speed</td>
</tr>
<tr>
<td></td>
<td>Reliability</td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
</tr>
<tr>
<td>44</td>
<td>Transit and land use</td>
</tr>
<tr>
<td>52</td>
<td>Investment levels and state of good repair</td>
</tr>
<tr>
<td>56</td>
<td>ON TO 2050 and transit</td>
</tr>
</tbody>
</table>
About the Transit Trends snapshot
Transit is a critical element of a well-functioning regional transportation network. Transit improves mobility by allowing travelers to avoid congested highways, connects people to jobs when they lack access to a car, reduces greenhouse gas emissions, and makes the region more attractive for businesses and residents.

The Chicago region’s long-established transit system is extensive: Together, the Chicago Transit Authority (CTA), Metra, and Pace serve more than two million trips each weekday at a cost per rider that is among the lowest in the country.

However, the system also faces numerous challenges. Transit ridership is not increasing quickly enough to meet GO TO 2040’s goals, due to lower-than-projected population growth, reduced transit service levels, and minimal supportive land use changes. When and where residents use transit is shifting, straining capacity in new ways. Growing needs, such as the increasing demand for paratransit service, and new mobility solutions, such as ride sourcing, are changing the transportation landscape. These trends have broad implications for how transit supports people’s regional travel needs, including our commutes.

Along with these shifts in transit demand, aging infrastructure is contributing to system congestion and delays. To ensure transit continues to be a viable option and to meet our region’s goals, metropolitan Chicago needs to identify a stable and reliable source of capital funding that can support priority investments in achieving a state of good repair.

This snapshot report highlights data on regional transit use, performance measures, and investment. The first section explores regional transit use and changing demand for the system overall as well as particular services. The second section assesses how the system has performed on three fundamental measures: speed, reliability, and frequency. The remaining sections identify how the region has supported its transit network through land use changes and infrastructure investments.
Our transit system is one of metropolitan Chicago’s most critical assets. By providing an alternative to driving, transit improves mobility and air quality, and helps the economy and quality of life of the entire region.
Maintaining and modernizing the transit system will benefit everyone, not just those who rely on and choose transit to get around.
Transit use
How people use transit—when they ride and what modes they take—is changing. Understanding these changes will help the region plan to meet our goal to significantly increase ridership.
Regional goals

GO TO 2040 sets an ambitious target of doubling weekday transit trips in the region from 2 million in 2010 to 4 million in 2040.

To meet this goal, the Chicago region must increase ridership by 2.3 percent per year.

Despite strong gains in 2011 and 2012, ridership declined in 2013 and 2014, and the region did not meet the interim target of 2.3 million riders in 2015. Furthermore, the region is not on track to achieve its ridership growth targets. This slow growth is due to many factors, including an aging population, slow job and population growth, changing employment patterns, low gas prices, more telecommuting, system condition or reliability issues, increasing shared use mobility services, and lagging supportive land use changes.
Average weekday unlinked transit trips, 2000-15 and GO TO 2040 targets, in millions

Source: Federal Transit Administration National Transit Database.
Overall system ridership figures mask important differences between individual transit modes. Ridership has increased markedly on the region’s rail system (CTA and Metra) in recent years. CTA rail has seen the most rapid growth; in fact, ridership on the CTA rail system was the highest in its history in 2015. At the same time, bus ridership has declined over the past decade. Pace ridership fell precipitously during the Great Recession (2007-09), while CTA bus ridership experienced particularly steep declines between 2012 and 2016. As of 2014, rail became the most commonly used mode in the region’s transit system, with more riders on the Metra and CTA rail systems combined than on the CTA and Pace bus systems combined. This regional shift aligns with a national trend in which rail ridership is growing while bus ridership is stagnating.
At the same time, the region’s rail ridership growth is underperforming national trends. Ridership growth on CTA and Metra lagged national growth by about 15 percent between 2000-15. However, national figures include numerous systems, such as Los Angeles and Denver, which are now building rail systems they never had, capturing new transit markets that the Chicago area began serving long ago. Population growth in the Chicago region also has been slower than peer regions, which may further dampen ridership growth.
While national mobility trends clearly are playing out in the Chicago region, local factors also are influencing transit use, such as the amount of service provided. More service means that passengers wait less time between pick-ups, ride on less crowded vehicles, and/or can access a larger geography. Service reductions due to agency budget constraints or major construction projects can have a significant effect on ridership. The region is still feeling the effects of the 2010 service cuts enacted in the wake of the recession, when revenue from the sales tax and real estate transfer tax, which partially fund transit operations, plummeted.

CTA fare increases as well as the five-month closure of the Dan Ryan branch of the Red Line for reconstruction slowed the growth of rail ridership in 2013, according to the Regional Transportation Authority (RTA). CTA bus service levels have increased little since the 2010 cuts, while CTA rail has almost fully recovered. While Pace slightly reduced service in 2009, both Pace and Metra provide more service now than they have in the past 15 years.

Many exogenous factors affect ridership, including the cost of driving versus taking transit. Topmost in this variable is the price of gas, as people drive more when gas costs less. In recent years, low gas prices have dampened ridership gains. While complete national data is not yet available for 2016, initial indications are that bus ridership declined significantly, due in part to low gas prices.

Percent change in ridership and service hours, ADA paratransit, 2007-15

Source: Federal Transit Administration National Transit Database, Regional Transportation Authority Mapping and Statistics, and American Public Transportation Association Public Transportation Ridership Report.
Percent change in ridership and service hours, bus, 2000-15

Percent change in ridership and service hours, rail, 2000-15

As more people work from home, the number of people using transit five or more days a week has gone down. In addition, new residential and employment development has occurred within the region’s transit-rich areas, with the biggest gains in the Central Business District (CBD). Development has increased congestion and slowed bus speeds, reducing service quality. Finally, ride-sourcing services, such as Lyft, Uber, and Via, have affected transit use both by millennials and for shorter transit trips in general.

Population and employment changes at the sub-regional level also have a major effect on ridership. This is most obvious in the large overall decrease in ridership on the Metra Electric and Rock Island lines, as well as the southernmost portions of the CTA Red and Green lines. Population and employment have declined substantially near stations on these lines within Chicago and nearby south suburbs, only partly offset by growth further out along these lines. At the same time, ridership has boomed on CTA and Metra stations serving Chicago’s North Side. Metra also has also seen substantial growth in ridership at the outermost stations of many of its lines.

Changes in bus ridership have followed a less clear pattern. Pace has seen distinct growth and declines along several routes, some of which have been restructured to better meet customer needs and reduce transfers. Ridership growth has been strong on CTA bus routes along the north and south lakefronts, and those serving the growing West Loop and Illinois Medical District.

Shifts in transit ridership, whether upward or downward, create challenges for the transit agencies, both in terms of providing sufficient capacity on the North Side to serve burgeoning demand and in allocating appropriate service levels to areas across the region where ridership is declining.
Uneven gains in transit ridership across the region

Rail ridership has grown on the North Side for both Metra and CTA, while demand has declined on the South Side.

Source: RTA Mapping and Statistics.
Our region can take steps that will improve our long-term economic health including:

- Support human capital development through increased coordination between industry and educational and training institutions.
- Resolve uncertainty in state fiscal policy so it does not prevent the region from reaching its full economic development potential.
- Reorient economic development towards metropolitan-wide strategies to compete globally.

Metra station ridership change, 1999-2016

Source: RTA Mapping and Statistics.
CTA bus route ridership per mile change, 2000-16

Rider per mile

1 700

Gained
Declined

Source: RTA Mapping and Statistics.
Our region can take steps that will improve our long-term economic health including:

- Support human capital development through increased coordination between industry and educational and training institutions.
- Resolve uncertainty in state fiscal policy so it does not prevent the region from reaching its full economic development potential.
- Reorient economic development towards metropolitan-wide strategies to compete globally.

Pace bus route ridership per mile change, 2000-16

Source: RTA Mapping and Statistics.
Demand-response transit is a flexible mode of transit that does not follow fixed routes or schedules. Pace oversees several demand-response programs, including paratransit service, which is available to riders whose disability or health conditions prevent them from using fixed route services; Dial-a-Ride, which is typically limited based on a person’s abilities, age, and/or income; and Call-n-Ride, which is typically provided within a certain geography, such as a township or municipality. While ridership data is limited for Dial-a-Ride and Call-n-Ride services, since 2000, ADA paratransit service in our region has grown dramatically in response to intensifying demand and likely will continue to grow as the population ages.

Demand-response transit provides critical service to populations and areas that are difficult to serve with traditional bus and rail, but the network of services can be complex for users to navigate and presents unique financial challenges for operators.
Dial-a-Ride and Pace ADA paratransit coverage in the CMAP region

Source: RTA analysis, 2016.
ADA paratransit
ADA paratransit is operated by Pace throughout the region to provide demand-response service to ADA-eligible riders. Paratransit provides a critical mobility link for more than four million trips a year taken by people who cannot use a fixed-route service. Customers make reservations one day in advance, and surveys show that 84 percent of riders use the service to reach medical or dental appointments.8

While its near-term budget outlook is positive, the service faces longer-term financial sustainability challenges. Per-passenger trip, paratransit service can be 10 times more expensive to provide than fixed-route service; however, by law, paratransit fares are limited to double that of fixed-route fares. In addition, demand for service has grown faster than any other form of transit and is growing fastest in the suburbs. Due to low densities and spread-out destinations, these areas often cost more to serve.

While paratransit service will continue to be critical for many people, making fixed-route transit more accessible continues to be a priority. All buses in the region are ADA accessible, although the immediate surroundings of many bus stops in the region are not. Likewise, all trains are accessible, but many train stations are not. The CTA is committed to making all rail stations accessible over the next 20 years as part of its All Stations Accessibility Program.

Dial-a-Ride
Dial-a-Ride service provides more than one million trips each year for residents of specific jurisdictions in northeastern Illinois—typically townships, but also some municipalities and unincorporated areas. Users call ahead, generally one day in advance, to schedule a trip. Pace has service agreements with villages and townships to subsidize up to $3.00 per trip on paratransit vehicles owned by Pace or contractors. Each jurisdiction’s program has its own service parameters, such as hours, fares and eligibility. One program may restrict rides to the township, while another might take residents to a college or mall outside the township. Another program may restrict riders to seniors or people with disabilities, while others may provide service to the general public. Dial-a-Rides are mostly funded by the township or other jurisdiction, while Pace provides the vehicles and partial funding subsidies. Occasionally Pace is not involved, for example when the service is provided by subsidizing taxicabs.

While some people in the region rely on dial-a-ride to get around, it has numerous limitations. Containing service areas within municipal or township borders does not align with how people travel in a metropolitan area. Often, weekend, early-morning (before 9:00 a.m.), and evening (after 6:00 p.m.) services are minimal or nonexistent. Some services are limited to medical appointments or take passengers only to specific locations such as parks. Same-day travel requests typically are not accommodated.
The complexity of the Dial-a-Ride system also makes it more difficult to use. One helpful trend has been greater involvement by certain counties to organize and help fund services, for example MCRide and Ride DuPage. MCRide, in McHenry County, began as a consolidation of several municipal and township Dial-a-Ride services. It has expanded to cover large parts of the county, creating an easier to use, more consistent travel experience that is accessible to more people. New technology may provide opportunities to continue to make Dial-a-Ride more customer friendly.

Call-n-Ride
Adding to the complexity of demand-response transit are Call-n-Ride services, which, like Dial-a-Ride, provide curb-to-curb service within a defined area to extend the reach of the transit network. Unlike Dial-a-Ride, Call-n-Ride services do not restrict services to riders based on income, ability, or age, and reservations can be made much closer to the time of travel, typically up to an hour in advance, or riders may board at a scheduled stop. Online or smartphone booking is being rolled out now, and will be available in all Call-n-Ride service areas in 2018. To achieve faster response times, Call-n-Ride services generally operate within a smaller geographic area than Dial-a-Ride services.

Call-n-Ride can be a way to provide service to low-density areas where traditional bus service would only be cost effective at low frequencies. Call-n-Rides make timed connections with either Pace fixed routes or Metra commuter rail. For example, the Naperville-Aurora Call-n-Ride makes scheduled stops at the Fox Valley Mall, where people can connect to other Pace routes and their final destinations within the service area. Pace currently provides 10 Call-n-Ride service areas within the region, but the overall Call-n-Ride system is highly decentralized, with some municipalities have both Call-n-Ride and Dial-a-Ride services.
More than 68 percent of all transit trips in the Chicago region are work commutes (compared with 43 percent of all auto trips), so data on transit commuting patterns provide important insights into system use and demand.

The types of transit people use vary geographically. The highest levels of transit ridership for work trips are concentrated in the city of Chicago and along Metra commuter rail lines. Metra is the most commute-oriented mode of transit in the region: 83 percent of all Metra rides are a trip to or from work. Metra is the primary mode of transit used by commuters in many of the collar counties. In contrast, Metra ridership is lower within the city of Chicago, particularly on the city’s West Side, which has high rates of overall transit use. Metra ridership is particularly concentrated near train stations in suburban Cook, DuPage, and southern Lake counties. Rates of Metra commuting tend to be higher along routes with greater frequency, including the BNSF Railway, the Union Pacific North, and the Union Pacific Northwest, compared with lower frequency lines, such as the Heritage Corridor and the North Central Service.
CTA rail commuters are heavily concentrated on Chicago’s North Side along the Brown, Red, Purple, and Blue lines. Bus commuters also primarily live in Chicago but are more dispersed throughout the city. The high-frequency bus routes along the northern lakeshore show up clearly on the map of bus commuters. Higher-density transit ridership on the North Side is partially a function of high population density along the north lakeshore.

The lower density of CTA rail commuters and lower overall ridership on Chicago’s South Side may be a function of lower population density, a higher tendency for people to be employed outside of downtown areas, and higher unemployment rates in these neighborhoods. In particular, the CTA rail lines on the South Side may not connect to many of the employment destinations for residents in the southern part of the city. For more on the effect of housing and employment patterns on transit use, see “Transit and land use” (page 44).
Most transit service traditionally has served weekday commutes in the morning and afternoon peak periods and, at least on the rail system, the downtown job market. Weekday transit service peaks during commuting hours, while weekend service is more consistent throughout the day. Pace and CTA provide about twice as much service during weekday peak hours as mid-day. Metra is especially peak oriented with four times as many trains during peak hours.

Number of service runs per 15-minute period, by mode

Pace bus

![Graph showing Pace bus service runs per 15-minute period by weekday and weekend.]

CTA bus

![Graph showing CTA bus service runs per 15-minute period by weekday and weekend.]

10 Metra is especially peak oriented with four times as many trains during peak hours.
CTA rail

Weekly
Weekend
Peak commute hours

Metra rail

Weekly
Weekend
Peak commute hours

Source: Chicago Metropolitan Agency for Planning analysis of February 2017 General Transit Feed Specification files.
While commute patterns still determine peak transit system use, ridership patterns have been changing. Since 2000, weekend ridership has grown faster than weekday ridership on all modes. CTA bus historically has had the highest share of weekend ridership, but rapid growth in CTA rail weekend ridership has brought the share of total CTA weekend ridership to 18 percent. Despite weekend ridership gains, Metra continues to be a predominantly weekday service. These changes in ridership patterns may indicate that Chicago residents are increasingly likely to use transit, particularly rail, to reach non-work destinations. Other factors may be more work hours occurring on weekends, greater transit use by younger generations, and more entertainment and retail destinations in transit-accessible areas.

Percent of ridership on weekends, 2000-15

Source: Federal Transit Administration National Transit Database.
Transit fundamentals

Numerous surveys and studies have found that three fundamentals of transit service—speed, reliability, and frequency—are most important to user satisfaction and ridership. Together, these basics make transit an attractive option and are critical to maintaining and growing ridership. Over the past 15 years, the record on these measures in northeastern Illinois has been mixed.
Speed

With some year-to-year variation, the average speed of commuter rail and suburban bus has stayed about the same. However, the speed of CTA service has declined markedly, in particular bus speed. The reasons behind the deterioration in bus speed are complex—including increasing congestion on city streets and operating policies, among other causes—but the need to improve speed is clear.

CTA rail speed has varied widely over the years. While individual lines operate at different velocities, and system speed may not capture every user’s experience, the average speed of CTA rail nevertheless has decreased. Historically high CTA rail ridership likely has contributed to slower speeds because congested trains require more time for loading and unloading passengers. Increasing service on branches with high passenger demand also can slow average network speed. Research has shown that delay from slow zones can negatively affect ridership.

Track condition is likely the most significant factor in CTA rail speed declines, and is a direct result of the level of investment the region makes. The linear footage of track with speed restrictions (known as “slow zones”) is currently slightly below its 10-year average level; however, this key measure of both speed and state-of-good-repair can increase and decrease rapidly as improvements are made through a number of small and large track renewal programs. Smaller projects, such as tie renewal and minor track work, can reduce slow zones for a relatively short time, but in some cases only full reconstruction, such as the 2013 rebuild of the Dan Ryan branch of the Red Line, can fully address state-of-good-repair.

Speed is particularly important on longer transit routes that compete with expressways. Pace is expanding its successful Bus on Shoulder program, through which buses bypass congested expressway lanes. Likewise, Metra has added express runs and is looking for more opportunities to do so to make its times more competitive.
Note: The mph figure represents the average speed for that mode in 2015.

Source: CMAP analysis of Federal Transit Administration National Transit Database.

Percent change in vehicle speed, 2005-15

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CTA bus</td>
<td>-10%</td>
<td>-8%</td>
<td>-6%</td>
<td>-4%</td>
<td>-2%</td>
<td>0%</td>
<td>2%</td>
<td>4%</td>
<td>6%</td>
<td>8%</td>
<td>10%</td>
</tr>
<tr>
<td>CTA rail</td>
<td>14.1</td>
<td>29.6</td>
<td>21.8</td>
<td>17.8</td>
<td>14.3</td>
<td>12.5</td>
<td>10.6</td>
<td>9.1</td>
<td>7.8</td>
<td>6.6</td>
<td>5.5</td>
</tr>
<tr>
<td>Metra</td>
<td>14.1</td>
<td>29.6</td>
<td>21.8</td>
<td>17.8</td>
<td>14.3</td>
<td>12.5</td>
<td>10.6</td>
<td>9.1</td>
<td>7.8</td>
<td>6.6</td>
<td>5.5</td>
</tr>
<tr>
<td>Pace bus</td>
<td>14.1</td>
<td>29.6</td>
<td>21.8</td>
<td>17.8</td>
<td>14.3</td>
<td>12.5</td>
<td>10.6</td>
<td>9.1</td>
<td>7.8</td>
<td>6.6</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Source: Chicago Transit Authority.

Percent of CTA track with slow zones, 2005-17

Source: Chicago Transit Authority.
Reliability

Numerous factors affect travel time reliability, a measure of how well transit adheres to its schedule and therefore how predictable the travel time is for a trip. Variation in traffic volumes, passenger loading, and other conditions affect travel time reliability for buses, as do operating policies. CTA rail is affected by everything from medical emergencies to fluctuations in passenger loads. Commuter rail reliability can decrease due to passenger loading delays, weather, and conflicts with other trains.

One of the most important efforts to improve the travel time reliability and speed of the region’s transit system is Bus Rapid Transit (BRT). Also referred to as Arterial Rapid Transit, BRT is a package of improvements that encourage faster boarding, reduce the number of stops, and give buses either their own lane or priority at traffic signals, or both. The region has had some success with this strategy, and much more progress is possible. Transit Signal Priority, or TSP, can improve schedule adherence, reduce travel time, and reduce operating costs for buses while having minimal effect or even improving the movement of other traffic.14 TSP is currently programmed for installation at 400 traffic signals across 13 corridors, but full implementation has been complicated by the variety of jurisdictions that must cooperate and the age of traffic signal controls in the region.

Securing funding to improve existing infrastructure is the most important factor affecting transit reliability. New or rehabbed vehicles break down less and arrive on time more often. Improved train signal systems and added track capacity provide flexibility to maintain schedules in spite of incidents.
Select active and funded bus reliability improvements

Source: RTA Mapping and Statistics.
Frequency

Frequency of transit service is the strongest predictor of ridership. Customers generally perceive waiting as the worst part of any trip, and cutting wait time dramatically improves the desirability of transit.15 Increasing frequency also improves connectivity between different transit routes, and therefore overall accessibility. Catching a transfer is much more convenient when the wait time is five minutes versus 20. Similarly, the predictability of arrival time matters less when the service is very frequent, particularly for buses. However, on the rail system, increasing service near to capacity, as much of the North Side rail services are, can make disruptions harder to absorb due to the cascading effect on schedules and thus travel time reliability.

A 15-minute headway (the time between transit service arrivals) often is the rule of thumb defining “high frequency.” High-frequency service enables travelers to simply show up at a transit stop, rather than consult a schedule. Based on this threshold, most of the CTA system is high frequency, while most of the Pace and Metra system is not. Overall, the region’s high-frequency transit service is concentrated within or near the city of Chicago.

In addition to significant funding constraints the region’s transit implementers also face physical constraints on their ability to increase frequency on key routes. On several CTA rail lines, passenger utilization (the number of square feet in the train car per passenger) becomes high as trains approach the Loop. In short, trains in the peak period are too full, resulting in uncomfortable commutes or long waits to board. Physical constraints, such as flat junctions between lines, old signal systems, insufficient rail yards, and insufficient power supply, often limit the CTA’s ability to increase service frequency during peak hours. The CTA is planning to address one of the largest constraints—the junction between the Red and Brown lines north of Belmont Station—as part of the Red and Purple Modernization project. However, the Loop structure that carries over half of the lines in the city remains a significant bottleneck, and addressing this may require changes to operating patterns.

Bus capacity is constrained in different ways, and expanding bus service to increase frequency faces particular financial and physical limitations. Many of the region’s bus garages are more than 50 years old and at capacity, and additional service would require more buses, garages, drivers, and support staff. However, new efforts to increase bus speed by giving buses priority in congested areas could enable more service without more staff and equipment.
Transit morning frequency, in minutes

0 - 7
8 - 15
16 - 30
31+

Source: CMAP analysis of February 2017 General Transit Feed Specification files.
Similar to CTA rail, Metra faces a variety of capacity constraints, including the ability to store enough vehicles in yards, limits on the number of trains that can run on lines shared with freight rail, and other factors. Based on passenger utilization—represented by the number of trains per day that are more than 95 percent full—capacity limitations affect passengers most on the BNSF Railway, Union Pacific North, and Union Pacific Northwest lines, with many trains at or over 95 percent full. Still, numerous lines have limitations on the amount of service that can be offered, and expanding service would require large capital investments to separate lines that cross at grade, add track and rolling stock, improve signals, expand coach yards and maintenance facilities, and make other improvements.
< 5.4 square feet per passenger
5.4 - 5.7 square feet per passenger
> 5.7 square feet per passenger

CTA rail stops
Top line capacity constraints

Source: CTA 2017 System-Wide Rail Capacity Study.
Transit and land use

Photo credit: Ian Freimuth via Flickr, https://www.flickr.com/photos/ifmuth/
Transit provides a critical link between where people live and work. Likewise, people’s transit use is often a function of whether they live or work near transit.
Transit availability has several dimensions: how frequent the service is, how close the stops are to where people live and work, how easily people can walk to nearby stops, and how many destinations people can reach through the service. CMAP’s Access to Transit Index is a metric composed of each of these four elements that reports the percent of the region’s population and employment with at least moderate transit availability. In the past seven years, this measure has improved slightly. The greatest changes in transit availability were in suburban parts of the region.

This indicator can improve because population and employment shifted to areas with better transit availability, better service was provided, or some combination of the two. Analysis suggests that the improvement is due almost entirely to changes in service: partly a recovery in overall service levels since 2010, but also better targeting of existing service.

Development patterns such as the density of housing and employment play a crucial role in the viability of transit. CMAP analysis shows that increasing employment density near transit stations would have a larger effect on transit ridership than many other transit capital and service expansion strategies. This effect is particularly strong for jobs located in the CBD, but in general, locating jobs and residences near transit has a powerful positive effect on ridership.16

Gain in mode share at low and high levels of strategy implementation, 2015

Source: CMAP Transit Ridership Growth Study.
Transit availability index with change, 2010-17

Source: Chicago Metropolitan Agency for Planning, 2017.
Unfortunately, progress toward higher densities near transit has not been uniform across the region. Total jobs near areas with high transit accessibility declined from 2000–15. While there has been a resurgence since 2010, that growth has not overcome prior losses. Similarly, housing units and population have increased more slowly in transit-rich areas than in areas with limited or no transit. Without supportive land use changes to locate more residences and jobs near transit, the region’s ability to increase transit ridership is limited. Two CMAP reports, the Transit Ridership Growth Study and the Infill and TOD snapshot, further explore these issues.

Numerous suburban job centers have poor transit availability, particularly those in Lake County, the area south of O’Hare, and the I-88 corridor. At the same time, Chicago’s South Side and the southern suburbs have high transit availability but limited nearby job opportunities. The result is that, in comparison with Chicago’s North Side and the northern suburbs, which have both high transit availability and high job density, many people living in the southern suburbs and Chicago’s South Side have long commutes to areas without direct transit service. The mismatch between jobs and housing is particularly problematic for low-income residents, because the time and expense of commutes to more remote areas lacking transit are significant barriers to employment and upward mobility.

Transit providers have pursued a variety of last-mile strategies to extend transit service to auto-oriented employment areas, and municipalities also have an important role to play in encouraging supportive land use patterns. Improving the pedestrian environment with sidewalks and crosswalks are important first steps. The region’s transit stakeholders also have placed particular emphasis on increasing household density near transit, but increasing employment adjacent to transit would be a new, more effective strategy.
The combination of historical development patterns and recent trends results in the region continue to have serious mismatches between locations with high transit availability and high employment.
Places with high transit availability but low household density can better support transit through targeted infill development.
Investment levels and state of good repair
State-of-good-repair encompasses everything from whether stations have functioning elevators to whether a locomotive engine will start before its scheduled run. Thus, investing in the transit system to improve the state of good repair is a critical part of meeting other goals, such as increasing ridership and improving transit access to jobs.
The transit agencies are experiencing a capital funding shortage, with mounting state-of-good-repair and modernization needs. While the transit agencies are committed to operating safely, 31 percent of the transit system is not in a state of good repair—a percentage projected to grow without significant increases in capital funding. Existing funding levels often force the agencies to make difficult choices in the face of annual budget limitations, including allowing the condition of some assets to degrade. While transit operators have successfully and efficiently maintained basic service levels in this environment for some time, the transit system’s condition is degrading as the repair backlog grows. Over the long term, these annual budget-driven decisions will affect service quality and reliability.

Both CTA and Metra have made it a high priority to replace older vehicles in recent years, and the overall rail fleet age has decreased as a result of these purchases. These improvements also should reduce maintenance costs and improve system reliability. However, the near-term funding outlook suggests that such improvements will not continue and may reverse somewhat. Similarly, after major improvements in bus condition by CTA and Pace in the late-2000s, bus age is creeping upward again. Each transit agency is currently developing a “Transit Asset Management Plan” that will provide additional information about condition of assets such as tracks, bridges, and stations. To truly address state-of-good-repair backlogs and modernize the system, the region must pursue additional funding for transit capital investments.
Percent of replaceable assets projected to exceed useful life, RTA system

Source: RTA 2016 Capital Asset Condition Assessment Update.
Note: Projections based on $785 million in annual average funding.

Average vehicle age, 2000-15, in years

Source: Federal Transit Administration National Transit Database.

- CTA bus
- CTA rail
- Metra
- Pace bus
ON TO 2050 and transit

Photo credit: CTA WEB via Flickr
Transit is a critical part of how the region moves. Today, the region’s transit system faces many challenges. Persistent underfunding is limiting the agencies’ ability to maintain an adequate state of repair, even as use of the system is changing: Demand is high for paratransit service as well as rail service in the region’s core, while bus ridership across the region is declining. Meanwhile, residences and jobs are not locating in strong numbers near transit, leading to land use patterns that do not support the transit system.

ON TO 2050 will re-emphasize the GO TO 2040 goal to increase regional transit ridership by addressing shifting transit uses, focusing capital investment on state-of-good-repair and priority transit improvements, and spurring supportive land use changes.
Selected data used in the development of this report can be found at https://datahub.cmap.illinois.gov/group/on-to-2050-report-data.
The Chicago Metropolitan Agency for Planning (CMAP) is our region’s official comprehensive planning organization. The agency and its partners are developing ON TO 2050, a new comprehensive regional plan to help the seven counties and 284 communities of northeastern Illinois implement strategies that address transportation, housing, economic development, open space, the environment, and other quality-of-life issues. See www.cmap.illinois.gov for more information.

ON TO 2050 snapshot reports will offer data-driven summaries of regional trends and current conditions. These documents—as well as strategy papers—will define further research needs as the plan is being developed prior to adoption in October 2018.