

Building a Framework for Evaluating Reasonableness of CTPP Travel Time Estimates and Margins of Error

presented to

Chicago Area Travel Model User Group presented by

Cemal Ayvalik

(cayvalik@camsys.com)

Outline

- Background
- Motivation
- Study Design
- Data and Analysis
- Preliminary Results
- Conclusions
- Recommendations

Background

- Census Transportation Planning Products (CTPP) –
 Special tabulations of Census data, now ACS
 - » Pioneered by AASHTO in partnership with all states to support transportation policy and planning efforts

Transportation Tables

- » Demographic characteristics of home locations
- » Characteristics of work locations
- » Commuting patterns and modal/temporal distributions

2006-2010 CTPP features

- » First CTPP based on 5-year ACS data for small geographic units such as Census Tracts and Traffic Analysis Zones
- » 343 tables for over 200,000 geographies.

2006-2010 CTPP

- Released October 31, 2013
- Reduced sample size
- Spaning over five years
- Data quality for small geographies
 - » Need to incorporate uncertainty in the estimates
 - » New disclosure proofed data
- Updated data dissemination software
- Extensive training materials and workshops
- Technical support

Assessing the Utility of 2006-2010 CTPP Data

Develop a list of common and unique applications of CTPP data

Assess common issues encountered and remedies implemented

Suggest solutions, including future research and/or resource development

Inform decision-making for future products

User Survey and Peer Exchange

The key considerations included

- » Data content
- » Geographic delineation
- » Multiyear data accumulation
- » Margins of error
- » Data perturbation
- » Data dissemination and training
- » Future planning of CTPP data products

Data Content

- Different delineation of workplace data (multiple job holders, more relevant definition of part and full-time)
- More three-way residence and workplace tabulations
- Added-value tabulations such as commute distances
- Concerns with the data quality and timely release
- Unforeseen consequences of scope reduction
 - » Smaller CTPP
 - » No TAZ or TAD level tabulations
 - » Less flexible than before

Margins of Error

- 90 percent understand the concept, but roughly half use the CTPP data without accounting for those
- Experts use margins of error
 - » To evaluate the reasonableness of the estimates qualitatively
 - » To decide which geographic level of detail to use
- Guidance on communicating data with margins of error

Recommendations

Long-Term Census ACS Improvements

- » Second Jobs
- » Better Information on cellphone availability
- » New modes (ridesourcing) and sub travel modes (access/egress to transit)

More Multiway SE Tables and Flow Tabulations

- » Age, gender
- Employment, occupation, earnings
- » School enrollment
- » Internet access/use

Value-Added Enhancements to CTPP

- » Supplementwith traveldistance data,
- » Help users access multiple datasets,
- Facilitate data fusion with other sources (such as LODES, NHTS)

Motivation

Any practical options?

Desire to add value to CTPP

CTPP adds value to standard tabulations

Understand and deal with MOEs

Users wanted more data and more tables

MOE is a measure of sampling error not of accuracy

Can we test this?

Study Design

- Compare part of the CTPP flow data to an external data source
 - » Auto travel times (shortest path) via Google Maps
- Synthesize ACS sampling
 - » Two-step probability-proportional-to-size sampling (PPS)
 - » Collect data at a higher rate for a sample of tract pairs

Study Design

Develop and Test Sample Hypotheses

- CTPP Mean Travel Times are Equivalent to Google Estimates by Strata
- Accuracy of Mean Travel Times is Independent of MOE (Sampling Error)
- 3. Accuracy of Mean Travel Times is Independent of the Strata
- 4. CTPP and Google MOE are Equivalent across the Strata

Data Development and Analysis

Data Development

 Study Area: Part of the Detroit Metropolitan Area

» Population¹: 4.23 M
 Employment²: 1.95 M

2006 – 2010 CTPP: 1.75 Mflows among 82,452 tract pairs

- 1. 2016 Census Bureau Population Estimates
- 2. 2016 Quarterly Census of Employment and Wages

Data Development

CTPP Sample –
Stratified selection
of a set of tract
pairs

Synthesize Commutes – A set of probable O-D pairs for each of the selected tract pairs

Data Development – CTPP Sample

- Download CTPP Tables
 - » A112100; A110106; A202100; B306201; B302106
- Stratified sample to allow testing effects of select characteristics
 - TRACT SIZE Place of Residence
 - WORKER DENSITY Workplace
 - AERIAL DISTANCE
- 10% MOE with 90% confidence (n=70)

Data Development – CTPP Sample

- Probability-Proportional-to-Size Sampling
 - » P(selection) = f (size)
 - » 45 strata with 70 pairs w/o replacement
 - » Used worker flows as the size variable
 - » 3,150 O-D pairs were selected

Data Development – Test Sample

- Build point level O-D locations
 - » SEMCOG's Building Footprints
 - » Establishment locations (Info USA)
- PPS with replacement to select
 - » HHs from sampled residence (RES) tracts
 - » Establishments from sampled Place of Work (POW) tracts
- For each sampled tract pair, randomly match RES and POW points.
- 137,100 O-Ds in the test sample pool.

Data Development – Test Sample

- A custom built Google Maps API
 - » Lat/Lon pairs to highway travel times
 - » Collects "Directions" data at desired times and frequency
- Data collected
 - » One-month period (Late August and early October) Mondays thru Thursdays
 - » 7:00 AM to 8:30 AM @30-min intervals

Test sample of 11,235 O-D pairs to scale to CTPP sample

Analysis Approach

Differences in Mean Travel Time Estimates and Sampling Errors

Analysis of Variance (ANOVA) Differences in Travel Time Bin Distributions

> Cochran-Mantel-Haenszel (CMH) Statistics

CTPP Sampling
Error and Accuracy
Relationship

Correlation Analysis

H1A: Mean Travel Times

- CTPP vs. Google Maps (Main Effect)
 - » 26.3 vs. 23.7 Minutes
 - » Small but significant (N>3,000)
- Differences Across the Strata (Interactions)
 - » Minor differences in Tract Size and Worker Density
 - » Greater variance across Distance categories

H1B: Travel Time Distributions

 Minor variations across Tract Size and Worker Density categories, greater variations in Distance factor.

H1B: Travel Time Distributions

- CTPP & Google times statistically different by Distance
- CTPP data show "more noise" in reported travel times
- Google has higher share of shorter trips

H1B: Travel Time Distributions

Impact of noise in CTPP data on travel time estimates for long distance commutes.

H2: Accuracy vs. Sampling Error

Relative Error

 $\frac{ABS(\overline{EST_{CTPP}} - \overline{EST_{GOOGLE}})}{EST_{GOOGLE}} \times 100$

Sampling Error (Relative SE)

 $\frac{\overline{SE}_{CTPP}}{EST_{CTPP}} \times 100$

Sampling Error (Relative SE)

H2: Accuracy vs. Sampling Error

Relative Error

 $\frac{ABS(EST_{CTPP} - EST_{GOOGLE})}{EST_{GOOGLE}} \times 100$

Sampling Error (Relative SE)

 $\frac{SE_{CTPP}}{EST_{CTPP}} \times 100$

Relative Error	Relative Standard Error								
	Less than 10 Percent	10 to 15 Percent	15 to 25 Percent	25 to 50 Percent	50 to 75 Percent	75 to 100 Percent	1 to 1.5 Times	1.5 to 2 Times	2 Times or More
Less than 10 Percent	23	50	94	323	101	44	23	1	
10 to 15 Percent	13	25	39	146	58	22	9		
15 to 25 Percent	22	33	66	288	82	40	31	1	
25 to 50 Percent	14	36	87	359	129	90	42	4	
50 to 75 Percent	5	14	41	166	61	42	22	3	
75 to 100 Percent	2	4	12	72	26	31	14	2	2
1 to 1.5 Times		3	14	56	10	29	15		
1.5 to 2 Times	2	1	4	31	12	14	6		
2 to 3 Times			4	26	11	10	6		
3 to 5 Times		2	5	24	8	4	3		
5 Times or More		1	5	23	3	4			

H2: Accuracy vs. Sampling Error

Correlation = 0.133

95% CI = (0.096 - 0.169)

FACTOR LEVELS	SIZE	WORKER DENSITY	AERIAL DISTANCE		
LOW	0.127	0.108	0.070		
LOW MID			0.255		
MID	0.128	0.136	0.199		
MID HIGH			0.167		
HIGH	0.148	0.178	0.141		

H3: Relative Errors by Strata (Accuracy)

LOW

MID

HIGH

32.0

33.0

34.0

NORKER DENSITY

LSMEAN - Relative Errors (%)

34.9

35.0

35.8

36.0

37.0

38.0

38.7

39.0

- Test differences in mean travel time by strata
- Flows with higher levels of error:
 - » Smaller residential tracts
 - » Mid level worker density tracts
 - » Shorter distance commutes

H4: MOE by Strata (Sampling Errors)

- Compared sampling errors in CTPP vs. Google
 - » Google SEs are much lower
- CTPP errors are similar across strata
- Google errors <u>did not vary</u> across <u>Tract Size</u> and <u>Worker Density</u> categories
- Google errors were inversely related to distance
 - » 10 percent for "6 Miles or Less"
 - » 2 Percent for "25 Miles or More"

Conclusions and Recommendations

Conclusions

- A first step: Comparing CTPP to an external source
 - » Synthetic approach to pair point-level O-D
 - » Examine differences across market segments
- CTPP and Google mean travel times similar at the regional level
 - » Differences for short and long distance commutes
 - » CTPP showed greater noise in travel time distributions
- Little correlations between sampling error and accuracy
- Early comparisons of sampling errors between CTPP & Google
- Promise of data fusion with traditional data sources

Recommendations

Procedural Improvements

- Better ACS process synthesis in sample building
- Access/egress consideration
- Test new factors

Added Value

- Quality Control
- Additional data for users
- Validation of published SEs

Research

- Impute demographics to add more dimensions to CTPP
- Add travel time and demographics to LEHD

New CTPP is Coming

2012 - 2016 CTPP in early 2019

Web: http://ctpp.transportation.org

Listserv: http://www.chrispy.net/mailman/listinfo/ctpp-news

Technical Support: CTPPSupport@camsys.com

Small Geography Policy Change:

http://ctpp.transportation.org/Pages/Policy-Change-on-Small-Geography.aspx

Q: Accuracy vs. Sampling Error

Low correlations between accuracy and MOEs imply presence of both good estimates with large MOEs and poor estimates with low MOEs.

A cursory analysis on the right shows a relatively favorable picture for the good estimates with large MOEs (805 vs. 517 tract pairs) for the data used in the study.

Relative Error

$$\frac{ABS(EST_{CTPP} - EST_{GOOGLE})}{EST_{GOOGLE}} \times 100$$

Sampling Error (Relative SE)

 $\frac{SE_{CTPP}}{EST_{CTPP}} \times 100$

Relative Error	Relative Standard Error								
	Less than 10 Percent	10 to 15 Percent	15 to 25 Percent	25 to 50 Percent	50 to 75 Percent	75 to 100 Percent	1 to 1.5 Times	1.5 to 2 Times	2 Times or More
Less than 10 Percent	23	50	94	323	101	44	23	1	
10 to 15 Percent	13	25 4 6	39 4 0	146	58	22	9 9 9		
15 to 25 Percent	22	33	66	288	82	40	oyo	1	
25 to 50 Percent	14	36	87	359	129	90	42	4	
50 to 75 Percent	5	14	41	166	61	42	22	3	
75 to 100 Percent	2	4	12	72	26	31	14	2	2
1 to 1.5 Times		3	14	56	10	29	15		
1.5 to 2 Times	2	₂ 51	7 4	31	12	14	338		
2 to 3 Times			4	26	11	10	6		
3 to 5 Times		2	5	24	8	4	3		
5 Times or More		1	5	23	3	4		RIDGE MATIC	S