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1 Introduction, Objectives, and Background 

1.1 Basics of Agent-Based Modeling and Project Approach 
Agent-based models are ideal for studying systems inaccessible to traditional analytical approaches due 

to complexity and large number of interacting agents.  Emergent phenomena that cannot be either 

measured or observed as well as phenomena that cannot be mathematically modeled can be amenable 

to the agent-based framework.  The main difference between inductive and deductive models like 

conventional microsimulation ABMs and agent-based models is that in the former, we try to reproduce 

previously recorded behavior, that is, we “teach” the model what we’ve learned; in the latter, we 

“teach” the model how to learn and adapt.  While this concept itself is very appealing theoretically, 

using agent-based models for estimating travel demand and for traffic microsimulation presents several 

technical challenges. One important issue that requires addressing when dealing with network 

simulation models is how individual behavior affected by environment attributes, resulting from the 

individual choices, can be effectively captured at an aggregated (“neighborhood”) level.  For example, 

behavior of drivers in traffic stream affected by prevailing density (itself the result of previously made 

decisions of these drivers).  Another example is how decisions of route and departure time made 

individually are affected by actions of all travelers in that corridor.  In short, collective effects in these 

systems are quite robust and capturing them is important.  Thus, a certain level of meso-effects is 

necessary in any microsimulation system and it cannot be completely broken into individual-level 

decisions and interactions between the agents.   

In this regard, defining autonomous and intelligent agents that represent emergent collective behavior 

to estimate travel demand and network flows is quite challenging.  Direct interactions of agents with 

each other should be complemented with interactions with the “environment”.  In the current project, 

we plan to apply the basic principle of “emergent” collective behavior where individual rules of behavior 

are specified with the maximum possible behavioral realism (individual schedule consistency and real-

time adjustments based on the experience of trips already completed by the same individual) while 

there are some aggregate flows of information that provided to each agent (anticipated travel times) for 

planning. 

The integrated model system is built using two major pieces developed for the Chicago Metropolitan 

Region: Activity-Based Model (ABM) of the CT-RAMP (Coordinated Travel and Regional Modeling 

Platform) type, and Dynamic Traffic Assignment (DTA) model of the DYNASMART (Dynamic Network 

Assignment-Simulation Model for Advanced Roadway Telematics) type.  Both systems are planned to 

undergo substantial improvements to ensure a seamless integration.  In the integrated model system 

the original concepts of travel demand and supply become intertwined in the framework of individual 

daily schedules.  Thus, the final outcome of the project is a new integrated model rather than two 

existing models applied in an iterative fashion. 

1.2 CMAP CT-RAMP Activity-Based Model 
Parsons Brinckerhoff developed an ABM for CMAP specifically for highway pricing/tolling analysis in 

2010-2011 (Final Report and User Guide are available by request from CMAP).  The transit analysis 

framework for this ABM has been recently currently added by Parsons Brinckerhoff that resulted in 
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many advanced features added to the ABM on the transit side (Final Report and User Guide are 

available by request from CMAP).  Both these CMAP ABM models are briefly described below.  

1.2.1 CMAP CT-RAMP ABM for Pricing 

Parsons Brinckerhoff developed an ABM specifically for highway pricing/tolling analysis, which includes 

such features as 30 minute temporal resolution and work destination choice segmentation by person 

occupation.  The car ownership, destination, time-of-day, and mode choice models were estimated 

using local data and the other sub-models were transferred from the Atlanta CT-RAMP and 

subsequently calibrated based on the aggregate local data.  A number of enhancements were made to 

the model structure and parameters to account for various pricing sensitivities, such as distributed value 

of time and increased number of time-of-day periods (8 in the current version).   

 

The Pricing CT-RAMP model is implemented for the 17-county Chicago region and microsimulates 10 

million persons in the base year using approximately 6,000 zones (2,000 TAZs with three transit access 

sub-zones per TAZ) to represent the region.  The CMAP model has eight time periods for highway skims, 

and two time periods for transit skims.  Transit skimming is done separately for premium and local 

service by walk and drive access with EMME’s headway-based optimal strategies algorithm, which is a 

probabilistic path-builder with transit sub-mode choice.  The network procedures were implemented 

with EMME for network assignment and skimming.  The model runs on 4 Windows 7 Enterprise 

machines each with 12 cores and 144 GB of RAM.   

 

Highway pricing is a transportation policy where ABMs have clear and tangible advantages over 4-step 

models.   The Chicago region already has toll facilities that allow for statistical analysis and estimation of 

impacts of congestion and pricing on travel demand.  Following are the main modeling aspects of this 

project:      

 User segmentation in the demand model and highway network procedures.  One of the primary 

advantages of a microsimulation ABM is a practically unlimited population and travel segmentation.  

It is essential for pricing studies where different segments may have very different willingness to pay 

for travel time savings and reliability improvements.  It is shown that 9-10 travel segments combined 

with 7-8 population segments provide a reasonable level of segmentation that can also be 

supported by the travel surveys used for model estimation.  In aggregate network simulations like 

static traffic assignment, a parallel level of segmentation can be supported in multi-class 

assignments but the classes have to be grouped by value of time rather than travel purpose or 

person type.              

 Distributed Value of Time (VOT) and other behavioral parameters.  Within each segment, willingness 

to pay is subject to a significant variation across individuals and situations.  A model that operates 

with discrete VOTs may exhibit illogical abrupt responses to small changes in toll values.  

Microsimulation framework allows for an effective randomization of VOT as well as other 

parameters across individual agents within the same segment.  This approach was adopted for the 

CMAP CT-RAMP where each individual obtains VOT from the parameterized distribution. 
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 Travel dimensions affected by congestion and pricing.  Pricing directly affects tour-level and trip-

level choices (route, mode, destination and time of day) through the generalized cost component in 

the utility functions.  However, a recently included advanced feature of ABMs allows for capturing 

impacts of congestion and pricing on activity generation and car ownership choice through a wide 

range of accessibility measures.  In particular, in the Chicago region, household car ownership 

proved to be a strong function of the auto accessibility relative to the transit accessibility with an 

especially strong impact of accessibility to rail.         

 Time-of-day choice with a fine temporal resolution.  Modeling impacts of congestion and pricing 

(and peak spreading effects in particular) requires a level of temporal resolution of 30 min or less.  

This results in a large number of alternatives (thousands) when multi-dimensional tour-scheduling 

choices are modeled.  In the recent ABM versions, special combinatorial methods for treatment of 

these choices were applied.  The developed approach ensures a full consistency of individual daily 

schedules without gaps or overlaps in the sequence of activities and trips between them.              

 Treatment of vehicle occupancy.  Vehicle occupancy is a very important factor that strongly affects 

willingness to pay as well as frequently used for eligibility to use Managed Lanes (HOV/HOT lanes).  

Two different modeling approaches that have been used.  The first one is simpler and considers 

occupancy as part of individual mode choice.  The second one is more complex and based on an 

explicit modeling of joint travel as a separate travel segment.  The second approach constitutes one 

of the advanced features of the CT-RAMP model structure.  In both cases, VOT is scaled to account 

for car occupancy.  It is implemented by “damping” the cost coefficient in the mode choice utility.    

 Route type choice integrated with mode choice.  All-or-nothing route choice framework embedded 

in a deterministic traffic assignment has inherent drawbacks in portraying the proportion between 

those who chose a tolled route and those who don’t.  In this regard, adding an explicit choice of 

route type (toll vs. non-toll) as the lower level in the mode choice structure helps compensate for 

this deficiency.  Recently, a similar problem has been recognized with respect to all types of 

Managed Lanes (not necessarily tolled, like HOV lanes).  Hence in the Chicago ABM, route type 

choice has been extended to incorporate distinctive route types explicitly. 

1.2.2 Transit Modernization of CMAP CT-RAMP ABM 

Parsons Brinckerhoff has recently developed a new version of the CMAP CT-RAMP ABM specifically for 

transit analysis.  The model is based on the previously developed Pricing ABM.  The transit 

modernization included a large number of additional model features to better address behavior of 

transit users in the complex multi-modal transit system in the Chicago Metropolitan Region.  Both mode 

choice and transit assignment models were significantly extended to incorporate many attributes of 

premium transit services in addition to conventional parameters like travel time and cost.  In particular, 

the following main innovative model components can be mentioned:  

 Advanced “non-labeled” mode choice model formulation where differences in transit modes are 

quantified and explained by service attributes subject to policies rather than by fixed labels like 

“bus” or “rail”.   
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 Enhanced spatial resolution where all location choices and corresponding transit access and non-

motorized modes are modeled at the level of 17,000 Micro-Analysis Zones (MAZs); in particular, 

transit walk access is modeled by using a detailed navigation network. 

 Incorporation of a wide set of station/stop characteristics such as station type (pole, shelter, plaza, 

station, and major terminal), provision of real-time information, ease of boarding (level platform, 

low floor, and staircase), cleanliness, density of commercial activities and crime rate in the station 

area.  These parameters were quantified as components of boarding time as well as boarding time 

and/or wait time perception weights.  

 Incorporation of a wide set of on-board service characteristics including comfort, cleanliness, 

convenience, social environment, productivity, etc.  These parameters were quantified as 

perception weights on in-vehicle time.      

 Total capacity constraints and crowding effects that required internal equilibration of transit 

assignment.  Total capacity constraint was introduced by using the effective headway calculation 

method.  Crowding effects were modeled using innovative methods developed by PB.  Essentially, 

seating and standing passengers are distinguished on each transit segment and crowding penalty 

functions are developed for each group separately with the penalties for standing being most 

onerous.     

 Incorporation of transit service reliability.  Special statistical function was developed for average 

extra wait time associated with bus “bunching” and other schedule non-adherence factors 

depending on the service frequency, number of boarding and alighting passengers, stop location on 

the route, time of day, etc.  This function was incorporated in the transit assignment equilibration.  

 Incorporation of probabilistic choice-base passenger arrival at the station instead of a random 

arrival hypothesis.  This results in a wait time as non-linear function of headway rather than a 

simplified half-headway rule that is applied in many standard models.     

 Addressing important details of actual fare structures including inter-modal and intra-modal 

transfers and zone-base fares for commuter rail. 

The complete CT-RAMP ABM structure as developed for CMAP is shown in Figure 1. 
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Figure 1: CMAP CT-RAMP ABM Structure and Recently Updated Sub-Models 
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Jayakrishnan et al., 1994). To enable this interaction, several aspects had to be incorporated in the 

representation: 

 

 Totally disaggregated representation of individual agents as decision entities throughout the 

simulation process, which implies (a) retention of the memory of the trajectories and 

experiences of each traveler through the simulation, (b) opportunities for exercising choices 

along the way, either ahead of nodes or in an event-based manner (e.g. triggered by thresholds 

or occurrences), and (c) availability of relevant supply-side attributes in dynamic manner 

throughout the simulation. 

 Efficient network (graph) representation and associated data structures to enable fast-

processing in optimum and feasible path computations for both real-time decisions as well as 

day-to-day iterative and consistency-seeking (equilibria) procedures. 

 Different information availability states for the individual agents— including source or 

information and type of information, coupled with the corresponding decision rules appropriate 

to the extent of responsiveness to such information. 

 Ability to load the network in various ways, including ability to load individual activity tours and 

schedules, with and without en-route adjustment; this feature is essential for correctly 

integrating with ABM for the demand side. 

 Particle-based approaches to capturing the physics of traffic interaction in the network which 

retain the individual entity of the agents while exploiting robust relations among state variables 

in propagating vehicles and other entities. 

 Consideration of multiple user classes in terms of system performance (supply-side), 

information availability, assignment and travel behavior rules. 

 Sensitivity of network performance to prevailing weather conditions, including rain or snow 

intensity and visibility. This capability was introduced, calibrated, tested and demonstrated in 

over three years of development funded by FHWA’s road weather traffic management program 

(Kim et al., 2013, Mahmassani et al., 2009; Hou et al., 2013).  

 Consideration of heterogeneous user preferences in dynamic path-finding computations. For 

example, finding paths to consider for travel when some links are tolled, or more generally 

when users consider multiple attributes in their path selection, can be accomplished efficiently 

using a parametric algorithm that can be applied with any continuous or discrete distribution of 

users’ value of time (Mahmassani, Zhou and Lu, 2005). 

 
Simulation-based DTA models require detailed network information. Networks used in DYNASMART are 

typically built on the basis of existing static networks, which often do not contain necessary information 

such as cycle and green times and allowed movements at each phase at a signalized intersection, or 

definition of each movement at a node (e.g. left turn, right turn, U- turn, and through movement). Thus, 

in addition to data provided by static networks, information from several other external sources is 

necessary to achieve an accurate representation of the real-world network. Figure 2 illustrates the 

overall process for building and converting networks for DYNASMART. The main tool for the conversion 

is a software called DYNABUILDER, which is capable of converting many networks from different 

platforms into a DYNASMART-P network. DYNABUILDER requires input files in a certain format. 
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Therefore, several pre-processing steps are conducted using different codes and macros to re-format 

network data obtained from external sources. 

 

For the CMAP Microsimulation Extension of the Activity-Based Model the Chicago regional network is 

used. The static network is provided by the Chicago Metropolitan Agency for Planning (CMAP). This 

static network (originally in TransCAD) was transformed into the DYNASMART-P format. Figure 3 

presents a snapshot of the network.  

 

Figure 2: Flowchart for the Conversion from the Static to the Dynamic Network Model 
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Figure 3: Chicago Network Configuration 

 

 

The network has the following specifications: 

 40,443 links  

 1,400 freeways 

 201 highways  

 2,120 ramps (96 metered ramps) 

 36,722 arterials 

 13,093 nodes  

 2,090 signalized intersections (Implemented as Actuated Control) 

 2,196 no control 

 8,655 all way stop sign 

 152 Two way stop sign 

 1,961 zones  

 1,944 internal 

 17 external 

The current network also includes 144 tolled links with a fixed price. The location of the tolled links is 

shown in Figure 4. Some additional lanes and new links are added to the current network to build the 

future network based on the CMAP congestion pricing study (CMAP 2012). The additional lanes are 
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added to the current network in DYNASMART as new links. As a result, the future network has 79 new 

links and 32 new nodes and 66 of these 79 links are priced links. In total, the future network has 210 

priced links.  

 

 

 

 

 

 

 

 

Figure 5 shows the future network and highlights new tolled facilities. 

 

Figure 4: Location of Tolled Links in the Current Network 
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Figure 5: Location of Tolled Links in the Future Network 

 

Two scenarios are selected to illustrate application of DYNASMART-P for the Chicago regional network. 
The first scenario considers current network and the second one considers future network with the 
additional tolled facilities. Following simulation and DTA specifications are considered: 
 

 6:00 AM to 10:00 AM as simulation horizon (240 minutes) 

 Forecasted demand for 2016 

 Provided by CMAP 

 Based on the Activity Based Model (ABM) 

 6,332,185 generated vehicles with different values of time 

 5 iteration of user equilibrium for dynamic traffic assignment 
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 Three class of vehicles (if a vehicle uses tolled lanes it would be shared between its passengers 
and driver’s value of time would be considered for that vehicle) 

 Single (driver only) 

 Joint2 (two passengers including driver) 

• Joint3 (three or more passengers including driver) 

 
Figure 6 and  
Figure 7 present some general output of the two above mentioned scenarios. Figure 6 presents 
cumulative vehicle generation of the network and also cumulative arrival of the vehicles to their 
destinations. It can be seen that both scenarios have similar performance and around 2 million vehicles 
have not reached their destinations at the end of the simulation. Note that many vehicles are generated 
at the last hour of simulation which need time to reach their destinations. In addition, due to the large 
estimated demand (6.3 millions trips), large gridlocks have formed in both scenarios which decreased 
the network output rate significantly.  
Figure 7 presents dynamic traffic assignment convergence for both scenarios based on the average gap 
which is defined as following: 
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  Equation 1 

 
where O is the origin sets, D, destination set, T, departure times, m, vehicle classes, α, value of time, P, 
set of paths, r, path flow, GC, experienced general cost, and π is the minimum calculated general cost. 
Note that each user equilibrium iteration has one internal iteration.  Based on the user equilibrium 
assignment calculation at each UE iteration, one network simulation would be conducted.  After the 
simulation, a path swapping algorithm is run (as part of the internal iteration).  Then, based on the path 
swapping results, another simulation is run and the results of this simulation are used for the next user 
equilibrium assignment iteration. For simulating the above mentioned scenarios, including a 4-hour 
planning horizon with 6.3 million vehicles, about 3 hours and 45 minutes is needed.  Each internal 
teration includes two simulation runs and a path swapping procedure which requires about 9 hours in 
total. The user equilibrium assignment calculation time depends on the iteration number. For the above 
mentioned example, it has the following calculation times (in hours) for iteration 1 to 5: 148.3, 57.5, 
43.2, 29.7, and 23.1. Overall, the whole DTA simulation run with all the required steps takes about two 
weeks and the required memory for the calculations is about 10 GB for each scenario. 
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Figure 6: Cumulative Network Generation and Throughput for Three Pricing Scenarios 

 

Figure 7: Convergence Patterns in terms of Average Gap 
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2 ABM-DTA Integration Approaches 

This section describes the methodologies for the various levels of ABM-DTA integration. It also outlines 

the complexities associated with each approach. All ABMs currently in practice rely on conventional 

origin-destination based Level-of-Service (LOS) matrices (“skims”) to provide the agent-based travel 

choice utility functions. The techniques of LOS skim generation have been formed as an integral part of 

the 4-step modeling paradigm and are a result of the limitations of the static assignment framework. 

This traditional integration is shown in Figure 8.  

Figure 8: Integration of Demand Model and Static Assignment 

 

Despite the convenience and manageability of skim matrices, their static nature undercuts the improved 

capacity of ABMs to represent an agent’s true response to dynamic transportation conditions.   

Thus, it is evident that dynamic network simulation represents a better counter-partner for an ABM; 
especially since both ABM and DTA operate with individual particles as modeled units (individual tours 
and trips) and have compatible levels of spatial and temporal resolution.  

One possible way to integrate ABM and DTA was adopted in the SHRP 2 C10 project.  It employed DTA 

to produce crude LOS matrices (the way they are produced by STA), and use these LOS variables to feed 

the demand model.  This approach, in the aggregation of individual trajectories into crude LOS skims 

however, would lose most of the details associated with DTA and the advantages of individual 

microsimulation (for example, individual variation in Values of Time or other person characteristics).   

Essentially with this approach, the individual schedule consistency concept would be of very limited 

value because travel times will be very crude for each particular individual.  The approach is shown in 

Figure 11. 

This method does not take advantage of the additional beneficial dimension of an ABM—DTA 
integration -- consistent individual schedules (that can never be incorporated in an aggregate 
framework).  Individual schedule consistency means that for each person, the daily schedule (i.e. a 
sequence of trips and activities) is formed without gaps or overlaps.   
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Figure 9: Integration of ABM and DTA (Aggregate Feedback) 

 
 

The challenge is to develop creative and effective approaches for integrating ABM and DTA such that 

none of the additional benefits of both these advanced models are sacrificed. Any such approach should 

follow the following principles: 

 Considering individual agents and not only in a sense of decision-making units to which the choice 

models are applied (that is a rather trivial microsimulation approach) but also in terms of the 

realistic choice contexts and available information.  We consider individual decision-making units 

such as individual households and persons in ABM, individual vehicles and associated travel parties 

in DTA, and individual transit/non-motorized travelers rather than market segments.  An important 

derived feature of this approach that is specifically requested by the RFP is that that each individual 

decision maker operates with realistic available (imperfect) information and under individual-level 

time-space constraints.  It is very different from the loose coupling adopted in the SHRP 2 C10 

Project where each traveler is assumed to have a simultaneous access to full information about LOS 

for all potential trips while the LOS used for this purpose is not individual but rather aggregate.  In 

this regard, we want to exploit advanced concepts from agent-based modeling for integrating 

behavior processes in a network context, with special-purpose data structures geared to the 

physical and behavioral processes modeled.  This allows for better representation of user 

heterogeneity (individual travel variations) in network-based choice processes, with implications for 

optimum path computations.  In practical terms, it is essential to have different users choosing 

different paths in the network for the same trip origin, destination, and departure time with 

subsequently different time and cost parameters that cannot be achieved if aggregate skims are 

used.  Conceivably, as was mentioned in the SHRP 2 C10 Report, network path choice should be 

done “on the fly” in a fully disaggregate manner depending on each traveler’s tradeoffs between 

travel time, toll, distance and any other important route characteristics.  

 Maximum possible temporal and spatial resolution.  To the extent possible, we will consider 

maximum temporal resolution (essentially real-time continuous) through the entire model system 

and finer-grained spatial units like MAZ.  The existing CMAP CT-RAMP structure operates with 30 

min intervals at both daily level of planning tours and modeling actual trip departure time choice.  

This is not enough to seamlessly integrate it with dynamic network simulation.  While, transferring 

the entire ABM to continuous time resolution may not be realistic within the current project time & 

Microsimulation ABM

Microsimulation DTA

List of 

individual 

trips

Aggregate 

LOS skims 

for all 

possible trips
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budget we have developed an effective hybrid approach (applied in the Phoenix-Tucson CT-RAMP 

ABM) where each individual plans the daily schedule in term of tours with a 30-min temporal 

resolution but subsequently details of each trip and activity are refined in continuous time (5 min or 

less).  In terms of spatial resolution, the Transit Modernization CT-RAMP ABM is already being 

transitioned to the MAZ level for all location choices.  We will also explore possibility to implement 

network simulations (including DTA) with the same level of resolution, i.e. a list of MAZ-to-MAZ 

individual trips rather than TAZ-to-TAZ trip tables.  According to our preliminary analysis of the 

Chicago regional network, it may influence runtimes significantly, thus, some spatial aggregations 

might be inevitable to make dynamic path building and network loading realistic on the regional 

scale.   

 Individual daily pattern and schedule consistency.  This is an important unique measure of 

equilibrium between microsimulation demand model and network model that was largely 

overlooked in the SHRP 2 C10 Project, however, played a prominent role in the SHRP 2 C04 and L04 

Projects.  One of the essential outcomes of the entire process is an individual daily pattern and 

schedule formed for each person that contains all activities and trips.  In reality, the observed 

patterns and schedules are always consistent in time and space since every person can be only in 

one particular place at a time.  This consistency is essentially individual, i.e. activity schedules and 

durations are individual and travel times are specific to each individual and trip.  Using aggregate 

skims in this context ruins this principle and can be classified as yet another aggregation bias that we 

would like to avoid.  In this regard, as explained in the next section, our method is specifically 

designed to take advantage of simulated individual trajectories (as the only consistent 

representation of LOS) instead of synthetic aggregate skims.  This concept is also beneficial for 

innovative, and more complete, formulations of demand-supply network equilibrium that are 

appropriate to the expanded set of choice dimensions included in an ABM. 

In practical terms, we consider three possible ways of integration between the demand ABM and 

dynamic network equilibrium models: 

• Daily level.  This means that an entire ABM is run to generate a daily activity pattern for each 

individual and then an entire-day network simulation is implemented at each global iteration of the 

process.  This approach does not automatically mean a loose coupling that was applied in the SHRP 

2 C10 Project since the equilibration feedback can provide specific details for each component of the 

daily schedule including dynamic characteristics of individual trajectories rather than aggregate LOS 

skims.  This approach can be preferred for long-term planning when overall regional equilibrium is 

essential while details of individual responses to stress conditions in the network become of 

secondary importance.  This process can be viewed as achieving consistency between the 

behavioral/cognitive level of ABM decisions, and the physical reality captured by the DTA model 

relations.  Because of the focus on medium to longer-term consistency, it is important to devise a 

process that generates solutions that satisfy well-defined and reproducible notions of consistency 

(equilibrium) to enable comparison of different measures and policies. This approach has a practical 

advantage since it does not require a substantial change in the existing ABM or DTA software.  Most 
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of the integration aspects are handled through an interface that connects the existing pieces of 

software.  It is also portable since it allows for a replacement or upgrade of either ABM or DTA (or 

transit simulation tool) in the future while the other two approaches are strongly wired to the ABM 

and DTA used in the initial development.  

• Trip/activity level.  This approach is more appealing from the behavioral standpoint than the first 

one although the difference is substantially mitigated when the overall equilibrium framework is 

considered rather than a single demand-network global iteration.  With this approach, neither ABM 

nor DTA is programmed to work for an entire day with a fixed input but the multiple interactions 

between them occur during the simulation process somewhat mimicking the real time 

implementation of activities and trips during the day.  However, these interactions are bound to 

entire activities and trips as the minimal units.  In particular, an individual trip travel time is fed back 

to the activity adjustment module after completion of each particular trip that may result in 

rescheduling of the subsequent trips and activities of the same individual. This activity adjustment 

module can be defined inside the either of ABM or DTA environment. A complex activity adjustment 

module requires much more behavioral information and should be done inside the ABM 

environment which calls for more frequent data (travel times and list of activities) exchange 

between ABM and DTA. A Simpler and rule-based activity adjustment module can be performed 

inside the DTA environment, which would save time and memory usage as it does not requires data 

exchange between ABM and DTA. At the moment, it is recognized that this approach has strong 

advantages for analysis of short-term shocks, accidents, special events, holidays, and other 

situations where the system is apparently not in an equilibrium state.  It is also called for to study 

day to day variability, under different realizations or instances from the “usual” pattern. In the 

context of regional equilibrium, the (more complex) trip/activity-level integration may (not 

necessarily) result in the same solution as the day-level approach since eventually a consistent 

individual daily pattern and schedule is built for each individual. Comparative testing will provide 

better insight in the dynamic behavior of alternative approaches. 

• Real-time level.  This approach in many regards is similar to trip/activity-level approach (especially in 

the activity rescheduling mechanisms of ABM). The main difference is that the feedback from the 

network simulation model to the activity adjustment module is implemented even earlier than the 

end of the trip, i.e. in the en-route status of the traveler.  Incorporation of the real-time travel 

information in flexible rerouting is a routine feature of DYNASMART that we plan to use in the 

current project.  We plan to take this feature to the next level that incorporates not only the driver’s 

ability to re-plan the given route according to experienced conditions but to re-plan (or re-schedule) 

the rest of the trips.  An initial capability was conceptually demonstrated by Abdelghany and 

Mahmassani (2003) more than 10 years ago. Compared to the trip/activity-level approach this 

additional feature is beneficial for modeling evacuation during a disaster with the ability for people 

to change their typical pattern that the non-disaster model determined.  In the course of the current 

project, we plan to explore advantages of this (new) approach in detail.  It also, should be noted that 

a hybrid construct is possible where en-route information would affect route choice but still would 

be fed back to the activity adjustment module after completion of the entire trip.    
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The described approaches are progressively more complicated from the first being the simplest and the 

third being the most complex in terms of integration between the ABM and DTA. 

2.1 Day-Level Integration 

2.1.1 Day-Level Integration Schema  

This method of equilibration for ABM and DTA is presented in Figure 10  below, where two innovative 

technical solutions are applied in parallel. The first solution is based on the fact that a direct integration 

at the disaggregate level is possible along the temporal dimension if the other dimensions (number of 

trips, order of trips, and trip destinations) are fixed for each individual.  Then, full advantage can be 

taken of the individual schedule constraints and corresponding effects. The inner loop of temporal 

equilibrium includes schedule adjustments in individual daily activity patterns as a result of congested 

travel times being different from the planned travel times. It might help the DTA to reach convergence 

(internal loop), and is nested within the global system loop (when the entire ABM is rerun and demand 

is regenerated). The convergence of the global system loop should be checked for both cases of 

including and not including the internal loop. All in all, either of these cases does not certify 

convergence. It is noted here, that the DTA should always report back dynamic travel times which are 

consistent with the activity schedule. This means, that for the full run of the ABM only LOS measures 

from the same activity plan should be used for utility comparisons.  

The second solution is based on the fact that trip origins, destinations, and departure times can be pre-

sampled and the DTA process would only be required to produce trajectories for a subset of origins, 

destinations, and departure times. In this case, the schedule consolidation is implemented through 

corrections of the departure and arrival times (based on the individually simulated travel times) and is 

employed as an inner loop. The outer loop includes a full regeneration of daily activity patterns and 

schedules but with a sub-sample of locations for which trajectories are available (it also can be 

interpreted as a learning and adaptation process with limited information).   

2.1.2 Consistency of Individual Daily Schedule  

The concept of a fully consistent individual daily schedule is illustrated in Table 1 below. The daily 

schedule of a person is modeled for 24 hours starting at 3:00 AM on the simulation day and ending at 

3:00 AM next day (formally represented as 27:00). The integrated model operates with four schedule 

related types of events: 1) in-home activities, 2) out-of-home activities, 3) trips, and 4) tours. Start and 

end times of activities logically relate to the corresponding departure and arrival times of trips 

connecting these activities. Each tour spans several trips and related out-of-home activities and 

essentially represents a fragment of the individual daily schedule.   
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Figure 10: Integration of ABM and DTA (Split Feedback) 

 

Table 1: Fully Consistent Individual Daily Schedule 

In-home  Trips Out-of-home Tours 

Activity Start End Purpose Depart Arrive Activity Start End Purpose Depart Arrive 

Sleeping, 

eating at 

home, 

errands 

3:00           

 7:30 Escort 7:30     Work 7:30  

    7:45 Drop-off 

child at 

school 

7:45    

   Work 7:50   7:50   

    8:30 Work 8:30    

   Shop 16:30   16:30   

    17:00 Shop 17:00    

   Return 

home 

17:30   17:30   

Child 

care, 

errands 

18:00   18:00     18:00 

 19:00 Disc 19:00     Disc 19:00  

    19:30 Theater 19:30    

   Return 

home 

21:30   21:30   

Resting, 

errands, 

sleeping 

22:00   22:00     22:00 

 27:00          
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In reality, the observed individual schedules are always consistent in the sense that they obey time-

space constraints and have a logical continuous timeline, where all activities and trips are sequenced 

with no gaps and no overlaps. However, achieving full consistency has not been yet resolved in 

operational models. The crux of the problem is that all trips and associated activities have to obey a set 

of “hard” (physical) and “soft” (consideration of probabilistic choices) constraints that can only partially 

be taken into account without a full integration between the demand and network simulation models.  

Also, both models should be brought to a level of temporal resolution that is sufficient for controlling 

the constraints (e.g. 5 min or less). 

The following constraints should be taken into account: 

 Individual schedule consistency: Activity start time should correspond to the preceding trip arrival 

time and activity end time should correspond to the following trip departure time.  This “hard” 

constraint is not controlled in either the 4-step demand models or the static trip-based network 

simulation models since they operate with unconnected trips and do not control for activity 

durations at all. Also, in 4-step models, the inherently crude level of temporal resolution does not 

allow for incorporating this constraint. In ABMs of the CT-RAMP family, certain steps have been 

made to ensure a partial consistency between departure and arrival times, as well as duration at the 

entire-tour level. This, however, did not include trip details and does not control for feasibility of 

travel times within the tour framework (though travel time is used as one of the explanatory 

variables). Certain attempts to incorporate trip departure time choice in a framework of trip chains 

have been made within DTA models, DYNASMART, in particular. However, these attempts were 

limited to a tour level only, and also required a simplified representation of activity duration 

profiles. This constraint expresses consistency (i.e. the same number) in each row of Table 1. 

 Physical flow process properties: These “hard” constraints apply to network loading and flow 

propagation aspects in DTA procedures. Physical principles such as conservation of vehicles at nodes 

must be adhered to strictly (e.g. no vehicles should simply be lost or otherwise disappear from the 

system). This constraint accounts for feasibility of travel times obtained in the network simulation 

that are further used to determine trip departure and arrival times in the corresponding columns of 

Table 1.  

 Equilibrium travel times: Travel times between activities in the schedule generated by the demand 

model should correspond to realistic network travel times for the corresponding origin, destination, 

departure time, and route generated by the traffic simulation model with the given demand. While 

most of the 4-step models and ABMs include a certain level of demand-supply equilibration, they 

are limited to achieving stability in terms of average travel times. There is no control for consistency 

within the individual daily schedule. The challenge is to couple this constraint with the previous one, 

i.e. ensure individual schedule continuity with equilibrium travel times.  This “hard” constraint 

expresses consistency between trip departure and arrival times in the corresponding columns of  

Table 1 with the travel times obtained in the network simulation. Practically, it is achieved within a 

certain tolerance level. 
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 Realistic activity timing and duration: Activities in the daily schedule have to be placed according to 

behaviorally realistic temporal profiles. Each activity has a preferred start time, end time, and 

duration formalized as utility function with multiple components. In the presence of congestion and 

pricing, travelers may deviate from the preferred temporal profiles (as well as even cancel or change 

order of activity episodes). However, this rescheduling process should obey utility-maximization 

rules over the entire schedule and cannot be effectively modeled by simplified procedures that 

adjust departure time for each trip separately.  None of the existing operational ABMs explicitly 

control for activity durations, although some of them control for entire-tour durations as does the 

CMAP CT-RAMP ABM; or the duration of the activity at the primary destination, as implemented in 

the SACOG ABM.  DTA models that incorporate departure time choice have been bound to a 

simplified representation of temporal utilities and limited to trip chains in order to operate within a 

feasible dimensionality of the associated choices when combined with the dynamic route choice. 

This “soft” constraint expresses consistency between activity start and end times in the 

corresponding columns of Table 1, with the schedule utility maximization principle (or in a more 

general sense with the observed timing and duration pattern for activity participation). In 

operational models, the focus has been primarily on out-of-home activities. It should be noted, 

however, that it is also important to preserve a consistent and realistic pattern of in-home activities 

(for example, reasonable time constraints for sleeping and household errands), as well as take into 

account possible substitution between in-home and out-of-home durations for work, shopping, and 

discretionary activities.                         

 

Schedule consistency with respect to all four constraints is absolutely essential for time-sensitive policies 

like congestion pricing.  In reality, any change in timing spurred by the policy would trigger a chain of 

subsequent adjustments through the whole individual schedule.  It can be shown, that under certain 

circumstances, an attempt to alleviate congestion in the AM period by pricing may result in worsening 

congestion in the PM period because of the compression of individual daily schedules that are forced to 

start later.  In the next sub-section, we suggest a method to achieve a consistent individual schedule 

with respect to all requirements listed above.  In this process, it is important to keep in mind that short-

term adjustments generally follow different processes than long-term changes to one’s “usual” activity 

patterns.  Any given day will experience some variation from the usual pattern, due to factors that are 

both internal as well as external to the traveler (e.g. weather, accidents, etc.).  The purpose of the short-

term adjustments is to account for such variation while providing feasible schedules that are consistent 

with the actual travel times.  On the other hand, the day-level integration presented here is intended to 

solve for the “usual” patterns for all travelers so as to achieve mutually consistent choices and 

experienced trip times, in other words a solution that is appropriately equilibrated over the long run. .  

2.1.3 Individual Schedule Adjustments (Temporal Equilibrium in Day-Level Equilibration)  

An individual’s schedule is adjusted based on anticipated travel times.  The scheduling component plays 

a role of interface that transforms the DTA output (individual vehicle or person trajectories) with 

departure and arrival times for each trip simulated with a high level of temporal resolution into schedule 

adjustments to the individual schedules generated by the ABM.  The purpose of this feedback is to 

achieve consistency between generated activity schedules (activity start times and durations) and trip 
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trajectories (trip departure time, duration, and arrival time).  This feedback is implemented as part of 

temporal equilibrium between ABM and DTA when all trip destinations and modes are fixed but 

departure times are adjusted until a consistent schedule is built for each individual. Individual schedule 

consistency means that for each person, the daily schedule (i.e. a sequence of trips and activities) is 

formed without gaps or overlaps as shown in Figure 11 below.  In this way, any change in travel time 

would affect activity durations and vice versa. 

 

Figure 11: Individual Schedule Consistency 

 

 

New methods of equilibration for ABM and DTA are presented in Equation 2 below, where two 

innovative technical solutions are applied in parallel.  The first solution is based on the fact that a direct 

integration at the disaggregate level is possible along the temporal dimension if the other dimensions 

(number of trips, order of trips, and trip destinations) are fixed for each individual.   

The schedule consolidation is implemented through corrections of the departure and arrival times 

(based on the individually simulated travel times).   

Adjustment of individual daily schedule can be formulated as an entropy-maximizing problem of the 

following form (Vovsha et al, 2012):  
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                      Equation 5 

 

where: 

          = trips and associated activities at the trip destination, 

     = activity at home before the first trip, 

      = (symbolic) departure from home at the end of the simulation period, 

    = adjusted activity duration, 

    = adjusted departure time for trip to the activity, 

    = adjusted arrival time for trip to the activity, 

    = planned activity duration, 

    = planned departure time for trip to the activity, 

    = planned arrival time for trip to the activity, 

    = actual time for trip to the activity that is different from expected, 

    = schedule weight (priority) for activity duration, 

    = schedule weights (priority) for trip departure time, 

    = schedule weight (priority) for trip arrival time, 

 

The essence of this formulation is that in the presence of travel times that are different from the 

expected travel times that the user used to build the schedule, he/she will try to accommodate new 

travel times in such a way that the schedule is preserved to the extent possible. The preservation relates 

to activity start times (trip arrival times), activity end times (trip departure times), and activity durations 

(Equation 2). The relative weights relate to the priorities of different activities in terms of start time, end 

time, and duration. The greater is the weight, the more important for the user to keep the 

corresponding component close to the original schedule. Very large weights correspond to inflexible, 

fixed-time activities. The weights directly relate to the schedule delay penalties as described below in 

the section on travel time reliability measures. However, the concept of schedule delay penalties relates 

to a deviation from the (preferred or planned) activity start time (trip arrival time) only, while the 
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schedule adjustment formulation allows for a joint treatment of deviations from the planned start 

times, end times, and durations.   

The constraints express the schedule consistency rule as shown in Figure 11 above. Equation 3 

expresses departure time for each trip as a sum of the previous activity durations and travel times. 

Equation 4 expresses arrival time of each trip as a sum of the previous activity durations and travel 

times plus travel time for the given trip. (Symbolic) arrival time for the home activity prior to the first 

trip is used to set the scale of all departure and arrival times. This way, the problem is formulated in the 

space of activity durations, while the trip departure and arrival times are derived from the activity 

durations and given travel times. 

The solution of the convex problem can be found by writing the Lagrangian function and equating its 

partial derivatives (with respect to activity durations) to zero.  It has the following form: 

      {∏[(
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 Equation 6 

This solution is easy to find by using either an iterative balancing method or Newton-Raphson method.  

The essence of this formula is that updated activity durations are proportional to the planned durations 

and adjustment factors. The adjustment factors are applied considering the duration priority. If the 

duration weight is very large, then the adjustments will be minimal. The duration adjustment is 

calculated as a product of trip departure and arrival adjustments for all subsequent trips. The trip 

departure adjustment {
  

  
} and trip arrival adjustment {

  

  
} can be interpreted as lateness versus the 

planned schedule if it is less than 1 and earliness if it is greater than 1. Each trip departure or arrival 

adjustment factor is powered by the corresponding priority weight.  As the result, activity duration will 

be shrunk if there are many subsequent trip departures and/or arrivals that are later than planned.  

Conversely, activity duration will be stretched if there are many subsequent trip departures and/or 

arrivals that are earlier than planned. Overall, the model seeks the equilibrium (compromise) state 

where all activity durations, trip departures, and trip arrivals will be adjusted to accommodate the 

changed travel times while preserving the planned schedule components by priority. 

SHRP 2 C04 and L04 Projects provided demonstration software with which we have implemented many 

numerical tests with this model.  In particular, the iterative balancing procedure goes through the 

following steps: 

1. Set initial activity durations equal to the planned durations {     }. 

2. Update trip departure times with new travel times and updated activity durations using Equation 3. 

3. Update trip arrival times with new travel times and updated activity durations using Equation 4. 

4. Calculate balancing factors {
  

  
} for trip departure times (lateness if less than 1, earliness if greater 

than 1). 



28 
 

5. Calculate balancing factors {
  

  
} for trip arrival times (lateness if less than 1, earliness if greater than 

1). 

6. Update activity durations using Equation 6. 

7. Check for convergence with respect to activity durations; if not go to step 2. 

 

Applying this model in practice requires default importance weights for activity durations, trip departure 

times, and trip arrival times. This is an area where more specific data are welcome on schedule priorities 

and constraints of different person types. This type of data is already included in some household travel 

surveys with respect to work schedules. It should be extended to include non-work activities many of 

which can also have schedule constraints. At this stage, we suggest the following default values in Table 

2. 

Table 2: Recommended Weights for Schedule Adjustment  

Activity type Duration Trip departure 

(to activity) 

Trip arrival (at 

activity location) 

Work (low income) 5 1 20 

Work (high income) 5 1 5 

School 20 1 20 

Last trip to activity at home 1 1 3 

Trip before work to NHB activity 1 5 1 

Trip after work to NHB activity 1 10 1 

NHB activity on at-work sub-tour 1 5 5 

Medical  5 1 20 

Escorting 1 1 20 

Joint discretionary, visiting, eating out 5 5 10 

Joint shopping 3 3 5 

Any first activity of the day  1 5 1 

Other activities 1 1 1 

 

If some activity in the schedule falls into more than one category (for example, work and first activity of 

the day), the maximum weight is applied from each column. 

It is possible to extend this approach in order to incorporate learning and adaptation. In the described 

procedure, the conditions anticipated when planning the tour/trip are compared with the conditions 

actually experienced as they occur en route; and then, trip departure time are adjusted to accommodate 

new travel times. In addition to that, the difference between expected and experienced conditions could 

be subsequently applied to the traveler’s learning and adaptation profile. For example, we envision the 

following method. If the difference is not significant according to a pre-specified metric, the traveler is 

assumed to adjust the temporal equilibrium (schedule) only. If the difference is significant, the traveler 

is supposed to be seeking a different daily pattern in terms of tours and destinations that means going 

to the outer loop of equilibration where more travel dimensions could be changed. 
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This method is also one of the possible analytical ways to examine the distinction between “reaction” 

and “choice” and whether there is a continuous temporal or situational dimension along which learning 

variables can be mapped as was stated in the CMAP model vision document. In particular, schedule 

adjustments (especially minor ones) represent “reactions” with a minimal learning horizon while 

changing activities and/or trip destinations is an example of “choices” that are based on a longer-term 

information basis.     

This flexibility in the manner feedback implemented from individual to individual is a completely new 

modeling paradigm that does not appear to have been explored yet.  As mentioned in the CMAP vision 

documents, because conventional static traffic assignment is time-invariant the knowledge gained by an 

agent about network conditions while en route is never actually modeled and therefore cannot be 

included in planning his activities or tours. Instead, the static conditions on the entire network are 

typically passed back to the head of the modeling stream—like a fresh set of traffic reports—allowing 

the agent to “try again”. While practitioners have invented a variety of metaphors to legitimize this 

practice, it is in truth only a crude approximation of the choices available to the agent during actual 

travel. Furthermore, plan and tour alterations necessitated by unexpected network conditions (both 

costly and beneficial) cannot be accommodated, though one would intuitively suspect them to be quite 

prevalent in a metropolitan region rich in opportunities for productive use-of-time.   

We believe that our suggested methods represent a breakthrough in this very direction.  As further 

suggested in the same document, to bridge this gap, we must find a way to attach “learning” variables 

to each ABM agent, track them as they pass through the DTA and then explain their route choice 

decisions in cognitive terms. Extending the definition of “learning” into the choice framework (in our 

case, the entire sequence of choice of each individual is defined by the level of adaption) might provide 

a richer means by which to control equilibration of the ABM over successive global iterations.  

2.1.4 Individual Schedule Adjustments and Relation to Schedule Delay Concept    

We plan to explore addition version of individual schedule adjustments that are even more behaviorally 

appealing and consistent with the other theories and existing ABM structure.   It should be noted that at 

this point of time there is no consensus on theory or prevailing practice in our profession regarding the 

individual scheduling process and associated responses to congestion, pricing, or other policy.   In 

particular, there is no consensus regarding the relationship between two different time scales where 

individual schedule adjustment can take a place: day-level equilibration implemented for long-term 

planning (where multiple global iterations can be associated with individual learning and adaptation), 

and real-time non-equilibrium responses from certain time point on (end of particular trip).  In reality, 

both processes can be intertwined, thus the schedule adjustment algorithm should be generic and 

should be based on the same behavioral principles.  This is the main intention of the current project.  On 

the other hand, modeling specifics become substantial from the practical perspective, for example, due 

to the equilibration process involved in the day-level schema only.   

For the individual schedule adjustment procedure, we can outline two (seemingly inconsistent) 

behavioral foundations:  
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 Time-of-Day (TOD) choice model embedded in the CT-RAMP ABM that can be re-run with any 

constrained set of alternatives.  This model is based on the estimated cross-sectional preference 

of travelers with respect to tour combination of departure-from-home and arrival-back-home 

times and trip departure time.  This model provides utility functions for each individual and trip 

departure time alternative (as well as for other tour dimension including tour departure time)  

 Schedule delay approach for each trip that provides estimates of perceived penalties associated 

with being early or late vs. the Preferred Arrival Time (PAT). 

TOD choice and schedule delay concept are seemingly unrelated approaches that cannot be applied in 

one model system framework but they can be brought to a common denominator to ensure consistency 

between modeling “stressed” and “unstressed” households as discussed below.  

The schedule delay approach has been widely accepted by the research community since its inception.  

According to this approach, the impact of travel time (un)reliability is measured by explicit cost 

associated with the delayed or early arrival at the activity location.  This approach considers a single trip 

at a time and assumes that the preferred arrival time that corresponds to zero schedule cost is known.  

The essence of the approach is that the trip cost (i.e. disutility) can be calculated as a combination of the 

following three components: 

  = value of travel time and cost,  

  = cost of arriving earlier than the preferred schedule,  

  = cost of arriving later than the preferred schedule. 

By definition, only one of the schedule costs can have a non-zero value in each particular case 

depending on the actual arrival time versus the preferred one.  There can be many analytical forms for 

the schedule cost as a function of the actual time difference (delay or early arrival).  It is logical to 

assume that both functions should be monotonically increasing with respect to the time difference.  It is 

also expected, in most cases, that the schedule delay function should be steeper than the early arrival 

function for most activities (being late is more onerous than being earlier).  The details, however, 

depend on the activity type, person characteristics, and situational context. 

The most frequently used forms include simple linear function (i.e. constant schedule delay cost per 

minute), non-linear convex function (assuming that large delays are associated with growing cost per 

minute), and various piece-wise functions accounting for fixed cost associated with any delay along with 

a variable cost per minute – see Figure 12. 
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Figure 12: Schedule Delay Cost Functions 

 

 

 

Using the schedule delay approach the proposed individual schedule adjustment approach modified by 

replacing the entropy-maximizing objective function (Equation 2) with a linear combination of functions 

of following type (note that we also extend the original concept that applied to trip arrival time only to 

incorporate also trip departure time and activity durations): 

∑ [      (       )]
 
   , for trip arrival earlier than planned,  

∑ [      (       )]
 
   , for trip arrival later than planned,  

∑ [      (       )]
   
   , for trip departure earlier than planned,  

∑ [      (       )]
   
   , for trip departure later than planned,  

∑ [      (       )]
 
   , for activity duration shorter than planned,  

∑ [      (       )]
 
   , for activity duration longer than planned.  

 

Equation 7 

In this formulation, contrary to the entropy-maximizing approach, It is possible to differentiate between 

disutilities associated with earliness and lateness as well as disutilities associated with shorter and 

longer durations.  This formulation of the objective function results in a simple Linear Programming (LP) 

problem with the same entire-day schedule consistency constraints (Equation 3-Equation 5).  It is as 

efficient as the previously suggested entropy-maximizing approach and can be applied for millions of 

individual records with a very minor computational overhead.   The utility components in Equation 7 can 

Preferred arrival time (PAT)

Cost, $

Late arrival, minEarly arrival, min

LinearLinear w/fixed

Non-linear
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be easily linearized by introducing intermediate variables in the LP framework in the following way (for 

trip departure time as an example): 

   [∑(     
       

 )

 

   

] 

Subject to (additional) constraints:  

  
           

       
           

        

 

Equation 8 

This way the original schedule delay concept for a single trip can be extended to consider the entire 

daily schedule in computationally very efficient way.  However, the reconciliation of the schedule 

adjustment algorithm and schedule delay theory does not solve the problem completely although it 

opens a way to apply this model in practice since there have been multiple publications on the ranges of 

values for the coefficients that could be borrowed for the current study.  There is also a need for 

reconciliation of the coefficients applied in the schedule delay model with the TOD choice utility 

functions applied in the core CT-RAMP ABM.  This step is outlined in the next section. 

2.1.5 Individual Schedule Adjustments and Relation to Time-of-Day Choice    

The TOD choice model is integrated in the CT-RAMP ABM with many other day-level, tour-level, and 

trip-level choices.  In general it is very difficult to single out the TOD choice component without violating 

the logic of other choices and consistency across the entire model system. 

However, the research team at the moment is exploring a new approach that resolves most of the issues 

and brings the core TOD choice component and schedule adjustments methodologically closer.  In this 

approach, each person and household after completion of each global iteration is evaluated w.r.t to 

time pressure that is based on a proportion between travel time, out-of-home activity time, and in-

home activity time (the corresponding analysis of the observed cases of travel budgets based on the 

available Chicago Household Travel Survey is currently underway).  As the results, all persons and 

households are classified as “stressed” and “non-stressed”.  The stressed households (in which at least 

one person is stressed) are re-simulated completely by the CT-RAMP ABM at the next iterations.   Non-

stressed households and persons are subject to individual schedule adjustments only.    

The relationship between the coefficients used in the schedule adjustment model and full TOD choice 

model is shown in Figure 13.  For each person and time choice dimensions (for example, trip arrival 

time) there is a set of random utilities associated with different timing choices where the highest utility 

alternative (including the random term) is chosen.  In a normal ABM run setting this is the only 

information that is retained.  However, for the schedule adjustment model, more useful information can 

be extracted from the choice utilities.  In particular, the loss of utility associated with choosing the 

adjacent alternative can be easily calculated.  This marginal disutility exactly corresponds to the 

schedule delay cost.      
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Figure 13: Time-of-Day Choice and Schedule Delay 

 

 

 

2.1.6 Pre-Sampling of Trip Destinations  

This method is intended to resolve one of the fundamental problems associated with integration of 

microsimulation ABM and DTA – the calculation of individual LOS variables for non-observed 

destinations and times of day (i.e. for characteristics of trips that were not simulated at the previous 

global iterations). The traffic microsimulation procedure embedded in the DTA produces robust 

estimates of average link travel times by time-of-day periods that can be used to construct average 

(shortest path) LOS skims similar to the conventional modeling procedures.   

However, a more advanced approach is welcome that would take advantage of the simulated individual 

trajectories that might be quite different from the average LOS skims that are aggregated across 

individuals and within certain departure time bins (30-60 min). Individual driving style and route choice 

are among the factors that can contribute to a significant individual variation of travel times for the 

same departure time bin and travel segment. Application of individual randomized Value of Time (VOT) 

and/or Value of Reliability (VOR) is another important consideration in favor of individual LOS (in 

presence of tolls).     

Yet another important consideration is the level of spatial resolution. LOS skims can be pre-calculated in 

matrix format only for several thousands of TAZs that result in millions of OD pairs. If smaller spatial 

units are applied, LOS skims cannot be pre-calculated and stored in a full-matrix format. It is also 

behaviorally more appealing to assume that an individual does not always scan all possible location in 

the region for each activity but rather operates within a certain spatial domain where he explores 

options over time and makes choices based on the past experience. 

These considerations give rise to a concept of pre-sampling of destinations, where the same subset of 

destinations is reused for each individual at each global iteration of ABM-DTA equilibration. The 

modeled Chicago region has about 20,000 Micro Analysis Zones (MAZs).  The following samples can be 

created in advance:       

Trip arrival time choice alternatives:
Individual utilities

3:00 Systematic 3:00 Random

3:05 Systematic 3:05 Random

3:10 Systematic 3:10 Random

3:15 Systematic 3:15 Random

3:20 Systematic 3:20 Random

Chosen

Un-Chosen

Un-Chosen

Un-Chosen

Un-Chosen
μ

ν
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 Primary tour destinations: 

o 400 out of 20,000 for each (home or work) origin and travel segment, 

o 40 out of 400 for each individual and travel segment, 

 Secondary stop locations: 

o 400 out of 20,000 for each OD pair and travel segment, 

o 40 out of 400 for each individual, primary destination, and travel segment. 

 

We suggest a sampling without replacement from the expanded set of destinations, where each 

destination is attached a weight based on the attraction size variable and distance from the origin (for 

primary destinations) or route deviation (for secondary stops). The weights are normalized to ensure the 

total of 400×20,000 for first (segment) samples and 40×400 for the second (individual) samples. This is 

to ensure uniform unbiased samples. It should be noted that a similar sampling procedure is always 

applied for modeling individual location choices in ABMs. However, in a conventional setting, the 

sampling is applied independently for each individual record and the samples are normally regenerated 

at each global iteration of demand-supply equilibration. Thus, there is a very low probability of finding a 

trip from the same origin MAZ to the same destination MAZ, departing in the same time bin which 

individual trajectory could be used for the next iteration.  

Pre-sampling of destination constrains the variation of destinations for each individual and allows for an 

efficient accumulation of individual trajectories in the microsimulation process.  With this technique, 

LOS variables for the ABM applied at each subsequent iteration will be defined in the following way:  

 First, individual trajectories to the same destination by departure time period for the same driver (or 

some other driver from the same household) are used if present in the previous simulation;  

behaviorally, this corresponds to personal learning experience; having only 30 possible destinations 

enhances this probability for each individual; if not: 

o Individual trajectories to the same destination by departure time period across all 

individuals are used if present in the previous simulation (if several of them are available, 

the average can be used);  behaviorally this corresponds to social networking when the 

driver can hear from other people about their experience; having only 300 possible 

destinations for each origin MAZ enhances this probability, if not: 

 Aggregate LOS skims by departure time period will be used as the last remaining 

option; behaviorally it can be thought of as using an Advice from an advanced 

navigation device. 

 

Updating individual travel times, cost, and reliability for accumulated observed choices means taking a 

full advantage of individual microsimulation. This is a new approach that has behavioral appeal 

(mimicking a learning and adaption process) and also avoiding aggregation of LOS variables.  We plan to 

explore it in the course of the current project.   
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2.1.7 Pre-Sampling of Trip Destinations as Representation of Learning and Adaption   

It is behaviorally appealing to further enrich the destination sampling component and associate it with 

individual learning and adaptation rather than a mechanical fixing of a certain number of sample 

destinations.  In this regard, each implemented individual trajectory would provide valuable information 

about multiple destinations (nodes) visited on the way as shown in Figure 14.  Essentially, if the 

trajectory included N nodes, it contains information on N×(N-1)/2 node-to-node travel times and cost 

that can be converted into zone-to-zone travel time and cost.  It should be noted that parking cost is not 

directly experienced at each visiting node but this cost component can be specified separately at the 

node (zone) level since it is independent of the trip itinerary.   

     

Figure 14: Learning about Space from Individual Trajectories 

 

 

In the course of the project, we plan to explore a gradual choice set extension mechanism that would 

correspond to the behavioral notion of learning and adaptation.  In parallel, we will investigate efficient 

ways to generate, store, and handle associated LOS attributes in a “tree” format rather than “matrix” 

format pertinent to conventional (all)zone-to-(all)zone skims.  The CT-RAMP ABM model (as practically 

any other ABM in practice) utilizes zone (MAZ) sampling procedures for all destination choices, but they 

are currently implemented independently for each tour and trip.  In this regard, the standard sampling 

practice (whatever sampling strategy is applied – random or by importance) assumes that an individual 

does not have any memory and cannot use the accumulated experience from the previous global 

iterations).      

The following conceptual outline is currently being considered in parallel with the previously described 

fixed-sample approach: 

 Every individual starts the simulation with a very limited sample (10 or so) of available destinations 

for each travel purpose chosen randomly.  Crude skims are used to estimate LOS variables for each 

destination. 

• One implemented trip provides individual 
learning experience w.r.t. multiple 
destinations

Origin

Destination

Intermediate nodes visited on the way:
•Travel time and cost experienced
•Parking conditions may not
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 For each individual, individual trajectories for the visited destination are stored and intermediate 

destinations are added to the choice sets if the corresponding purpose-specific size variable is 

positive. 

 For each individual and travel purpose, a subset of non-chosen (never-visited) destinations is 

updated by randomly choosing a limited number (5 or so) of available destinations for each travel 

purpose randomly.  Crude skims are used to estimate LOS variables for each never-visited 

destination. 

 For each individual and travel purpose, a subset of never-visited destinations is evaluated and if it 

exceeds a set limit (say, 300) they are randomly dropped.  This appears to be the case only if a large 

number of global iterations are implemented.  

 Destination choice operates with the adjusted sample of MAZs.  MAZs that correspond to actually 

experienced trajectories (visited as the actually chosen destination or on the way) are never 

dropped and the correspondent alternatives are evaluated based on the most recent travel time 

and cost from the previous global iterations experienced by the same individual for the same 

departure time bin.  MAZ that corresponds to never-yet-visited destinations are updated at each 

global iteration randomly.  They are evaluated based on the crude skims.  In the process, after 

several global iterations, majority of the destination in the choice set would be based on actual 

experience and individual time and cost at least for some departure time bins.   

 

2.2 Trip-Level Integration 

2.2.1 Trip-Level Integration Schema w/Periodic Updates of Anticipated Times   

This represents a more advanced ABM-DTA integration schema of the type that was proposed in 

research literature. The main focus of this project will be the implementation of this integrated ABM—

DTA framework. The day-level interaction between the ABM and DTA where ABM would generate trips 

for the whole day to feed to the assignment model and at the end of each global iteration, updated LOS 

variables would be fed to the ABM can be criticized as not appealing behaviorally. In the real world, 

people revisit their schedules continuously and update them when necessary. Additional important 

practical consideration is that DTA is very sensitive to unrealistically high travel demand and simply 

cannot complete a daily simulation if a gridlock occurred due to unbalanced demand. However, it is 

practically impossible to guarantee that the list of trips created by the ABM will never exceed capacity at 

any local part of the network. Thus, an early feedback from DTA to ABM that informs about approaching 

gridlock is essential since it would allow for an early correction of the travel demand in order to 

complete the simulation at any given global iteration. The main application of trip level integration is to 

consider short term events such as extreme weather conditions, evacuation and etc,, to model daily 

variability in factors external or internal to the decision-maker, and to capture the impact of changes 

that may be localized in space or time.  In this application it is assumed that an initial equilibrated list of 

activities with consistent schedule is available. This list of activities can be the output of the day-level 
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integration of ABM and DTA. Trip-level integration in this regard can adjust the schedule of activities 

dynamically for each individual based on short term events that affect travel times significantly. 

The CT-RAMP structure can be adjusted to have a capability to dynamically update schedules during the 

analysis period (from any time point on) rather than generate the entire daily plan from scratch.  The 

proposed integration algorithm can be summarized in the following steps:      

1. Initial planning. ABM produces a set of (planned) activities, tours, and trips in a way it is set now. 

2. Initial list of daily activity plans (which includes all tours and sequences of trips) for network 

simulation.  Activity plans with planned departure times for each individual are transferred to 

dynamic network simulation and all marked as “updated”. 

3. Network routing.  Updated trips of tour chains are routed and re-routed with a specified time step 

(5-15 min in practical terms).  

4. Dynamic network simulation. Routed trips of tour chains are implemented in a chronological order 

(by departure time). This process is similar to the conventional dynamic network simulation method 

but one important difference has to be mentioned. Vehicles and person trips are sent to the 

implementation queue from which they can be taken off and/or updated.   

5. Dynamic feedback.  Simulated travel times for completed trips are fed back to activity adjustment 

module and accumulated in the interface buffer for evaluation. While this operation is conceptually 

trivial it is challenging from the computational perspective since all individual daily patterns and 

schedules are distributed across multiple cores. It is important to feed back LOS experience of each 

individual user in a real time fashion for (possible) re-planning.   

6. Evaluation and re-planning. Activity adjustment module takes the implemented trips from the 

buffer, compares the actual travel time to the planned, and reschedules, adjusts, or cancels 

subsequent trips/activities for the same household/individual if the discrepancy between the actual 

and planned travel times is greater than a set threshold. This component is a new addition to the CT-

RAMP core structure that we plan for this project. This component uses the previously discussed 

schedule adjustment algorithm for each individual if the actual travel time is similar to the planned 

travel time. However, the difference is that this algorithm is applied only forward in time rather than 

to the whole day. Another important difference is that in case of significant discrepancies, activities 

and trips can be dropped or added. This is a more complicated mechanism than a pure rescheduling 

of a fixed sequence of activities and trips. We have developed an approach to this problem that is 

based on a rule-based mechanism that identifies the relevant travel dimension based on the time 

pressure index. If the time pressure exceeds a certain limit, the activity plan is subject to 

simplifications. We have currently experimented with the tour streamlining strategy that can resolve 

70-80% of cases in practice. In this case the primary destination of the tour remains the same but 

intermediate stops are dropped sequentially from the least important to most important until the 

time pressure index is normalized. We also plan to add a tour-elimination rule to resolve major 
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conflicts where unexpected delays are significant (1 hour or more) to the extent that an entire tour 

can be eliminated and if the person is in the middle of the tour, he would proceed back home 

instead of pursuing the original plan. Interestingly, these rules can also be applied to add stops or 

even entire tours if the travel time proved to be shorter than expected. We have currently 

experimented with insertion of “opportunistic” stops.        

7. Update of activity chains in the implementation queue.  Activity chains are dynamically updated at 

the end of each trip, future activities obtain a new duration or get canceled and trips that have not 

started yet obtain a new departure time.        

The proposed integrated trip-level ABM-DTA model is presented in Figure 15. This integration is done at 

the trip level for every individual with the periodic updates of the prevailed or anticipated travel times 

for every simulation interval. It is assumed that the DTA simulation interval is t. That is, the list of activity 

chains with a trip departing an origin every time period t is available. This trip-level integration might 

work within the larger day-level integration scheme as well (See Section 2.1) where the day-level 

feedback is referred to as “global iterations”. In this regard, the subsequent discussion refers to the 

inner-level loop that is subject to change in the trip-level integration. The main advantage of this trip-

level integration is the ability to directly work with individual trajectories rather than aggregated LOS 

skims.    

The algorithm begins at an arbitrary simulation interval nt. Currently, the network contains individuals 

who are en route to their destination and a list of activity chains with departing trips at nt. The trips are 

routed in the network, that is the time dependent shortest paths for these trips is computed and the 

paths that the individual trips will take is determined.  

These trips, along with the trips that are already in the network are simulated for the current time 

period, that is, until the beginning of interval (n+1)t. At the end of interval nt, the following information 

is available: 

a) Arrival information for completed trips till nt 

b) List of trips of activity chains departing in interval (n+1)t 

c) Link travel times 

d) Network loading information including loaded chain of activity status 

Given this information it is now possible to load the activity chains of trips that are only capable of 

starting at time (n+1)t. That is, suppose an individual trip  was planned to start at (n+1)t in the initial 

schedule, but at the end of interval nt, it is learnt that that individual is still en route for its previous trip 

or doing an activity at one of the nodes and is physically unable to start the planned trip starting at 

(n+1)t, then this trip will not be included in the list of trips departing at (n+1)t. This (instant) 

rescheduling, cancellation and insertion of subsequent trips for the same individual for intervals (n+1)t 

or later is accomplished using a mathematical program, details of which are discussed later. Once the 

rescheduled and cancelled trips are computed, the schedule of activity chains at (n+1)t is updated and 

supplied to the next simulation interval and simulation continues till the end of the next simulation 

interval, at which point this process is repeated. The algorithm is presented formally below.
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Figure 15: Trip level ABM-DTA Integration (inner loop) 
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2.2.2 Trip-level Integration Algorithm 

Assume simulation interval is t (the default value for this parameter in DYNASMART is 6 seconds); 

simulation duration is T 

Set n = 1 

At an iteration I: 

For n = 1 to T/t 

1. Route the list of trips in the current interval nt based on the current activity schedule. 

2. Simulate the trips departing at nt and the incomplete trips already in the network 

3. Examine all trips that can start in period (n+1)t 

a) If the current trip of any activity chain has not been completed at  the end of 

(n+1)t time interval: 

Do not start the subsequent trips of that activity chain for DTA in the next 

period (Experience) 

b) If the current trip of any activity chain has been completed at  the end of (n+1)t 

time interval: 

i. Route subsequent trips of the activity chain for period (n+1)t to obtain 

anticipated delays 

ii. Correlation between previous iteration and previous time periods to 

obtain anticipated delays 

Then based on anticipation, individual can postpone/cancel/depart immediately 

subsequent trips of the activity chain and update activity chains 

4. Set n = n+1 

End For 

In this algorithm, Step 3 adjusts the schedule for every individual at the end of every trip. The details of 

which are presented below. 

2.2.3 Individual Schedule Adjustments (Temporal Equilibrium in Trip Level Integration)  

An individual’s schedule is adjusted based on two factors – (a) experienced travel times for completed 

trips of activity chain by the individual and (b) prevailing/anticipated travel times of the subsequent trips 

of the activity chain that represent aggregate information.  

a) Experienced Travel Times:  The ability of an individual to make the succeeding trip is based on 

the travel time he/she experiences. If at the end of nt the individual has not yet reached the 
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previous trip’s destination/the next trips origin, then that trip cannot be included in the list of 

departing trips. 

 

b) Anticipated Travel Times: In addition to experienced travel times, an individual’s trip can also be 

rescheduled based on the travel time he/she anticipates for the following time periods. For a 

link a, in iteration I at time interval nt; Link travel time is:   
 (  ) . Let      be the path taken by 

the individual during trip i. Then the anticipated delay is a function of both the travel times in 

the current iteration and the previous iteration. That is,  (  
 (    ))            and 

 (  
   (  ))          . One way to calculate anticipated travel times is to find the routing cost 

(TDSP) of the next time interval. This is akin to a user listening to the radio for traffic delays or 

mapping his route using a mapping website prior to embarking on the trip. In the DTA context, 

before the rescheduling algorithm is employed, a routing is carried out to learn the travel times 

in the next time interval given the current network state. Another way to anticipate delays is to 

study the correlation of the link travel times with the link travel times in the previous iteration 

and the link travel times in the previous time period. The anticipated delays will consider 

adjustments in a rolling horizon timeframe. For example, in a given time interval, only delays 

anticipated within the next hour will be considered and those delays will be applied to all trips 

that are scheduled to leave in the next hour.  

c) Prevailing Travel Times: Another approach for estimation of the anticipated travel times is to 

use prevailing travel times to calculate time dependent shortest path for the subsequent trips, 

which are already available in the network from the previous simulation steps. Note that these 

times are updated on a very frequent basis throughout the simulation, thereby providing 

opportunities for updating all activity choice dimensions with the latest available times.  

Prevailing trip times include estimates of delays associated with queues at junctions and along 

links, and may also be combined with the equilibrated trip times to emulate users’ behavioral 

learning rules. These strategies may be more realistic in light of available information sources 

and human processing heuristics, and could also be implemented with limited software re-

engineering to execute in a time-efficient manner.  

 

2.3 Real Time Integration 
With the proposed trip level integration, real time integration becomes a specific case of trip level 

integration. In the trip level integration, the activity adjustment module is called at the each trip end 

node, while in the real time level integration the activity adjustment module is called at every node 

along the trip to a destination/activity node. This integration details is shown below in Figure 16. Note 

that this figure is similar to Figure 15. The repetitive steps are lighter in this figure and modified steps 

are highlighted. At each node of an activity chain along the network the planned and experienced travel 

times are compared. If the difference of planned and experienced travel time is larger than a specific 

threshold for an individual, the activity schedule adjustment module is called for that individual and the 
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activity schedule is updated. As this module would be called much more frequently relative to the trip 

level integration, the real time integration is computationally more extensive. 

While the overall framework of real-time integration is similar to the trip/activity level of integration 

there are some particular details that have to be addressed. For instance, it is computationally more 

effective to implement the readjustment decisions within the supply-side simulation, hence viewing the 

latter as a true platform for modeling user decisions in networks. This has been the philosophy guiding 

the development of DYNASMART from its earliest days, as one of the main motivating concerns was to 

capture the effect of real-time information and advanced system management interventions on user 

choices and the resulting performance of the system. 

Accordingly, DYNASMART provides the opportunity for each agent to exercise a choice or series of 

choices at each update time interval, which for practical purposes is real time or quasi-continuously. The 

most obvious example of this capability is to allow drivers to switch routes at every possible decision 

point—where such a switch is feasible. Similarly, users pursuing an activity chain may opt to extend the 

duration of their stay at a particular destination along the chain, and/or go to a different destination 

than originally planned for their next activity, and/or cancel it altogether. From a software 

implementation standpoint, and associated computational execution time, it makes sense for such 

decisions to be executed within the simulation, using information shared in RAM rather than read or 

retrieved from external files.  

There are also behavioral factors that weigh in favor of such implementation. The mechanisms 

governing real-time or en-route or in-activity choices are generally different from those underlying a 

priori choices. Experimental evidence in connection with commuting behavior is clear in this regard—en-

route models tend to be in the form of deviation from a plan, switching from a default choice, whereas a 

priori choices tend to include consideration of a more complete set of alternatives, and more 

comprehensive information on these alternatives. Accordingly, switching models tend to follow simpler 

mechanisms, which can be readily built onto the simulation platform, rather than the need to invoke an 

elaborate ABM that may be heavy-in-data and long on computation. Such a real time implementation 

recognizes the differences between a priori decisions, that are reached over a longer-term process, 

versus those that are purely reactive or short-term anticipative of unfolding conditions.  
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 Figure 16: Real Time ABM-DTA Integration (Inner Loop) 
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Furthermore, real-time decisions would generally rely more on recent experience and/or information 

received en-route, which is generally based on prevailing conditions, word of mouth, tweets and the 

like. While the state of the art of information provision calls for predictive information, existing systems 

available commercially do not yet deliver accuracy in prediction that leads to better user decisions. 

However, research studies (e.g. Dong et al., 2011) have demonstrated the value of such predictive 

information and controls under certain conditions. The proposed predictive travel times in Section 2.2.3 

could be built into the DTA tool as well. In fact, the same DTA simulation platform could be used to solve 

for consistent predictive information— which for evaluation purposes over the long run is equivalent to 

solving for an equilibrium solution (Dong, Mahmassani and Lu, 2006). 

For this project, we propose to enhance the number of choice dimensions for updating one’s planned 

activity schedule through adjustment decisions that would be triggered and executed as part of the 

simulation platform, by taking advantage of the existing flexibility already built into the DYNASMART 

platform. We will also identify areas that could be enhanced in this regard with only limited 

restructuring of the software implementation. More extensive and comprehensive real-time integration 

requires additional research on the behavioral side, which would dictate the kinds of models and 

implementation requirements for these models.   

3 Vision of Software Implementation and Data Exchange API 

The ABM-DTA model will be implemented by integrating two existing software platforms – CT-RAMP 

and DYNASMART.  CT-RAMP is implemented in Java, is multi-threaded, and is also distributed.  CT-RAMP 

uses the Java Parallel Processing Framework1 (JPPF) and Remote Method Invocation (RMI) to distribute 

work to additional machines on a cluster.  DYNASMART is implemented in FORTRAN and runs in a single 

multi-threaded process.  Since each program is a closed system, it requires all inputs and outputs to be 

files (or databases).  Both programs run on 64-bit operating systems in order to utilize large amounts of 

RAM. 

In terms of highway LOS measures, CT-RAMP currently reads aggregate zone-to-zone LOS measures.  

After calculating trips, CT-RAMP outputs either microsimulated trips or aggregate demand matrices for 

network assignment.  DYNASMART currently reads microsimulated trips or aggregate demand matrices 

as input.  In terms of outputs, DYNASMART can produce microsimulated trip trajectories (i.e. paths) 

and/or aggregate LOS measure matrices.   

As currently implemented, CT-RAMP and DYNASMART can only be integrated at the day-level using 

microsimulated trip files as input to DYNASMART and aggregate LOS matrix files as input to CT-RAMP.  In 

order to efficiently implement trip-level integration, two significant revisions to the existing platforms 

are required.  The first is to integrate Java with FORTRAN so they programs can run in a truly integrated 

fashion.  Java’s platform independence makes it difficult to easily integrate with FORTRAN (or C/C++) 

programs which are compiled for specific platforms.  However, there are Java technologies such as Java 

                                                           
1
 http://www.jppf.org/ 
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Native Interface2 (JNI) and the newer Java Native Architecture3 (JNA) that allow Java programs to call 

FORTRAN programs and vice versa.  The second significant revision is to share data between programs 

without reading and writing to the disk.  This is required as the amount of data to be shared is 

substantial.  The remainder of this section describes the software integration data requirements and 

proposed implementation strategies. 

3.1 Day-Level Integration 
As described earlier in this document, there are three types of ABM-DTA integration: day-level, trip-

level, and real time.  Day-level integration requires the following data be shared between the two 

software platforms: 

1) ABM Output / DTA Input: Microsimulated trips 

2) ABM Input / DTA Output: Microsimulated trip trajectories at the path level 

The ABM outputs trips with attributes such as Trip Id, Origin, Destination, Planned Departure Time 

Period, Vehicle Class, Value-Of-Time, and other market segment attributes.   

The DTA outputs trip trajectories at the path level with attributes such as Trip Id (to join to the ABM trip 

record), Various path level LOS measures such as free-flow travel time, experienced travel time, 

distance, cost, etc.  Note that day-level integration does not require link level (i.e. path component) 

trajectory information. 

In addition to trip trajectories, the DTA needs to supply generic LOS measures by Origin, Destination, 

Planned Departure Time Period, etc for use by the ABM in situations where there are no observed trips.    

3.2 Trip-Level Integration 
In the day-level approach, the ABM and DTA are integrated as closed systems.  Trip-level integration 

calls for data sharing between the programs during model runtime.  This means for example that after a 

trip arrives at its destination, the trajectory LOS measures can be used by the ABM to modify later 

travel.  Trip-level integration requires no addition data beyond what is required for day-level integration.  

It does however require the two software packages to be truly integrated.  Integrating the two programs 

is discussed in more detail in section 3.4 below. 

3.3 Real Time Integration 
Real time integration integrates the DTA and the ABM data mid-trajectory (i.e. at a node along a trip’s 

path for example).  Real time integration requires the following data be shared between the ABM and 

the DTA software: 

1) ABM Output / DTA Input: Microsimulated trips 

2) ABM Input / DTA Output: Microsimulated trip trajectories at the link level 

                                                           
2
 http://en.wikipedia.org/wiki/Java_Native_Interface 

3
 https://jna.java.net/javadoc/ 
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Instead of one set of LOS measures by trip, there is a set of LOS measures for each link that make up 

each trip path.  Link level trip trajectories are a significant increase in the amount of data being shared 

between programs.  Based on the current model design, link level data sharing is not currently required.   

3.4 Data Exchange API 
The previous description of the data sharing required by level of integration focused on inputs and 

outputs.  This input/output approach is a convenient description of the software requirements when the 

implementation is framed as two separate software packages.  However, these software packages 

cannot simply be implemented as separate programs that work with files (or databases) since it will not 

be computationally efficient to read and write the large amounts of data. 

What is proposed instead is a data exchange application programming interface (API) that both software 

modules (instead of programs) implement.  An API is a contract for how software components can 

interact, what components are exposed through the interface, and how they are exposed (i.e. their 

objects, attributes, and methods).  In addition, both modules will operate in the same process/memory 

space in order to avoid the costly disk I/O and the API will allow for threaded access since components 

of the model may be threaded. 

In order to integrate the two programs in a shared manner, the ABM or the DTA becomes the master 

program, and the other program becomes a slave process within the master.  This allows the two 

programs to share one memory space.  For example, the DTA becomes the master program and the 

ABM (or components of the ABM) is exposed as a series of dynamic link libraries4 (DLLs) that are loaded 

at runtime by the DTA.  The master manages the data and exposes it via the agreed upon data exchange 

interface to the slave process.  The slave can access and modify the data according to the interface. 

The data exchange API will consist of a series of objects and methods that describe the data interface.  

The final API will be specified once the model design is finalized.  A basic description of what the API may 

look like is below. 

1) Trip Object 

a. Attributes 

i. Id 

ii. Household Id 

iii. Person Id 

iv. Origin 

v. Destination 

vi. Planned Departure Time Period 

vii. Vehicle Class 

viii. Value-Of-Time 

ix. Assigned (T=Assigned by DTA, F=Yet to be assigned) 

x. Actual Departure Time  

xi. Actual Arrival Time 

                                                           
4
 http://en.wikipedia.org/wiki/Dynamic-link_library 
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xii. Actual Travel Time 

xiii. Free Flow Travel Time 

xiv. Travel Distance 

xv. Travel Cost 

xvi. Links (for real time integration) 

xvii. etc 

b. Methods 

i. HasTripBeenAssigned() 

ii. etc 

 

2) Link Object (for real time integration) 

a. Attributes 

i. From Node 

ii. To Node 

iii. Free Flow Travel Time 

iv. Actual Travel Time 

v. Distance 

vi. Cost 

vii. etc 

 

3) Trip LOS Engine Object 

a. Attributes 

i. Trips 

ii. Links 

iii. LOS Measures = (“TRAVEL TIME”, “DISTANCE”, “COST”, etc) 

b. Methods 

i. AddTrip(Trip, Household, Person, etc) 

ii. RemoveTrip(Trip, Household, Person, etc) 

iii. Trip = GetTrip(Id) 

iv. Trips[] = GetTrips(Household, Person, etc) 

v. Trips[] = GetTrips(Origin, Time Period, etc) 

vi. Trips[] = GetTrips(Destination, Time Period, etc) 

vii. Trips[] = GetTrips(Origin, Destination, Time Period, etc) 

viii. LOS = GetLOSAcrossTrips(LOS Measure, Origin, Destination, Time Period, etc) 

ix. LOS = GetLOSAcrossHHTrips(LOS Measure, Origin, Destination, Time Period, 

Household Id, etc) 

x. LOS = GetGenericLOS(LOS Measure, Origin, Destination, Time Period, etc) 

xi. PreCalculateGenericLOSMeasure(LOS Measure) 

xii. etc 
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4 Conclusions and Work Plan for Tasks 2-4 

4.1 Improvements Planned for CT-RAMP ABM 
The following improvements to the CMAP CT-RAMP will be implemented in the course of Tasks 2 & 3: 

 Enhanced temporal resolution allowing for generation of trips by 5-min departure time bins. 

 Individual schedule adjustment interface (delay-response and delay-avoidance version).  This 

interface can be implemented as a stand-alone subroutine (for a trip-level integration schema) 

or embedded in the real-time event-driven response of DTA (for a real-time integration 

schema).  

 Person-to-vehicle translation of the demand parameters (car occupancy, VOT).  This feature will 

allow for creation of an individual list of (auto) vehicle trips with the driver characteristics for 

SOV and entire travel party characteristics for HOV out of the list of person trips that is 

generated by the current version of the CMAP ABM. 

4.2 Improvements Planned for DYNASMART DTA 
The following improvements to the DYNASMART DTA will be implemented in the course of Tasks 2 & 3: 

 Integration of transit simulation, generation and extraction of additional level of service 

attributes required for the expanded set of activity and travel choice dimensions considered in 

the ABM.  

 Ability to call and apply ABM adjustment modules on an event-driven basis, and integrate the 

outcomes of the adjustment choices into the simulation.  

4.3 Development of a Transit Assignment and Simulation Platform 
As part of Task 2, a stand-alone transit network assignment and simulation platform will be 

developed that will work in parallel with DYNASMART: 

 The network will have a very high resolution. All stops and stations in the real transit 

network will be included along with all transit links, transfer links and centroid 

connectors. 

 Time-dependent movement of vehicles and passengers will be simulated. This will enable 

the modeling of transfers and bus loads explicitly. As a result, the intricacies of the fare 

structure due to transfers will be possible to model, as well. 

 Walking will be allowed on most of the links so that passengers will have the option to 

walk a certain distance to catch better service at a different location. 

 The movements of buses in traffic will be simulated in DYNASMART in parallel, so that the 

time-dependent bus link travel times are updated in the transit platform. 

 Based on the updated link travel times,bus loads and user experience, new time-

dependent shortest paths will be calculated and passengers will be re-assigned in an 

iterative manner until equilibration.  
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4.4 Work Plan for Tasks 2-4 
Our proposed work plan for the remaining Tasks 2-4 reflects our original proposal with no principal 

changes.  The following tasks will be completed:  

 

 Task 2: Produce a working multi-modal network microsimulation of the Chicago region.  The main 

deliverable of this task is a functioning demonstration of a multi-modal network microsimulation of 

the Chicago region.  In this task, we plan to build upon the existing regional networks provided by 

CMAP and existing DTA and multi-modal simulation models developed by NU.  This Task will be fully 

completed by 6/30/2014.   

 Task 3: Integrate network microsimulation with activity-based demand model.  The main 

deliverable of this task is a functioning demonstration of the means by which en route knowledge 

and other disaggregate data gained from the network microsimulation is incorporated into a 

regional activity-based model of travel demand.  This includes implementation of the interface 

between ABM and network simulation models, individual schedule adjustment algorithms, and 

other (real-time) integration linkages.  The integrated network micrsimulation/demand model will 

be completed and available for use at CMAP by March 30, 2015.  

 Task 4: Final Documentation and technical support.  The final months of the contract period are 

reserved for preparing final documentation and providing technical support to CMAP staff in using 

the new product.  Required documents include: a final report documenting the research effort, 

findings, data summaries and recommended next steps; and a user guide giving step-by-step 

instructions for interpreting and executing the code, data development and maintenance 

requirements and hardware and software needs.  Final documentation will be completed to a 

standard acceptable by CMAP by June 30, 2015.    

The time and main personnel associated with accomplishing each task and preparing each deliverable is 
summarized in Table 3.    
 

Table 3: Schedule and Main Personnel Responsible for Each Task 

Task Main personnel Deliverable Schedule 

Task 2: Produce a 

working multi-modal 

network 

microsimulation of the 

Chicago region  

 

Hani Mahmassani – 

lead 

Jim Hicks 

Peter Vovsha 

 

A functioning demonstration of 

a multi-modal network 

microsimulation of the Chicago 

region. 

 

July 1, 2013 – 

June 30, 2014 
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Task Main personnel Deliverable Schedule 

Task 3: Integrate 

network 

microsimulation with 

activity-based demand 

model  

 

Ben Stabler – lead 

Peter Vovsha 

Jim Hicks 

Hani Mahmassani 

A functioning demonstration of 

the methods by which 

disaggregate data gained from 

the network microsimulation is 

incorporated in a regional 

activity-based model of travel 

demand.   

 

July 1, 2014 – 

March 30, 2015 

Task 4: Final 

Documentation and 

technical support  

 

Peter Vovsha – lead 

Hani Mahmassani  

Jim Hicks 

Ben Stabler 

 

Final documentation and 

technical support to CMAP staff 

in using the new product.  

Required documents include: a 

final report documenting the 

research effort, findings, data 

summaries and recommended 

next steps; and a user guide 

giving step-by-step instructions 

for interpreting and executing 

the code, data development and 

maintenance requirements and 

hardware and software needs. 

April 1, 2015 – 

June 30, 2015 

Complete project   March 2013 – 

June 2013 
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