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Introduction
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POLARIS

(Planning and Operations Language for Agent-based Regional Integrated Simulation)

= Mandates from FHWA:
1. Model Traffic Control Centers and other ITS Systems
2. Enhance Interoperability among Existing Tools

= Core Goals and Philosophies of the POLARIS Effort:
— Develop Transportation Modeling Standards and Protocols

— Create an Open Source Model Development Environment
— Seek Out Opinions from and Actively Listen to the Transportation Community
— Connect Sub-Communities with a Common Modeling Framework

— Offer Helpful Tools while Maintaining Flexibility and Modularity



What is POLARIS?

= General purpose core libraries which
encourage flexible model development:

— Modular, Extensible, Reusable
— Agent Based
— High Performance

= A repository of useful code and model
fragments built using the core libraries

— Common Transportation Objects . . sy >
o POLARIS

O

— QOpen Source
— Extended by Researchers
= Support utilities
= Fully developed applications:
— Network Simulator
— Integrated Activity Based Simulator




POLARIS Transportation Systems Modeling Suite
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Agent Based Modeling

Agent will encapsulate a set of behaviors that govern their interactions with other
agents and with their environment

Agent-based methodologies have proven to provide a structure that can be used
to model a vast array of phenomena:

social processes
software systems
manufacturing systems
urban dynamics

economics

In POLARIS, the agent-based paradigm is facilitated through a discrete event
engine which puts developers in the “driver’s seat” of each individual agent

POLARIS core libraries and many extensions are not specific to transportation,
they can be used for any model which can be simulated as an agent-based system



Agent Based Transportation Simulation System
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Activity-Based Travel Demand Model



Activity-Based Travel Demand Model

= Derived from ADAPTS activity-based model:
— Simulation of how activities are planned and scheduled
— Extends concept of “planning horizon” to activity attributes
— Time-of-day, location, mode, party composition

=  Fully agent-based travel demand model
— All aspects of demand model are implemented as agent decisions

= Implemented in POLARIS language and adapted to discrete event engine

= Core concept:

— Universal set of activity planning / scheduling processes represented by heuristics
and/or models

— Outcomes constrained by local context
— Activity generation, planning, scheduling, etc. are events which are simulated
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Activity Generation

= Activity generation with joint hazard-duration equations
— Significant socio-economic variables
— Impact of hazard rate from other activities
= Failure probability (generation) calculated each timestep
— Based on time-since-last activity
— Calculated using observed UTRACS and fit to CMAP survey through updating
— hy = Ay At)EL + A,y (A,t)11 : where y,>1and y:< 1
— decreasing early failure (after trip chain), increasing late failure due to need
growth over time
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h*e" = hazard with exogenous hazard covariates
h"ev = without exogenous covariates



Planning Order Model
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Planning Constrained Destination Choice
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Activity Scheduling - Overall System
= Derived from TASHA (ILUTE) scheduling system

Activities added to schedule as simulation progresses
Overlaps happen due to planning process or schedule delay
Incorporates conflict resolution modeling

Resolution strategy determines which rules to follow
Resolution strategies and modification rules from observed empirical data

= When a new activity is added:

1.
2.
3.
4.

Case 1:

Determines conflict type (shown below)

Run conflict resolution model to determine resolution type

Modify schedule to fit new activity based on resolution type
Insert new activity or drop it (and restore original schedule)

Inserted Original Case 2: Overlapped Original Case 3: Overlap Start Case 4: Overlap End

Case 5: Overlap End & Start  Case 6: Insert & Overlap Start  Case 7: Overlap End & Insert Case 8: Insert/Overlap Start /End
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Activity Scheduling Rules

In the scheduling rules, the situation would be handled Scheduling Example:
as follows:
1. If resolution type is ‘Delete Original’ _
1. R Activity B f hedule, add Activity A
emove AcCtivity rom scheauie, a Cuivity f// Activity B W

2. If resolution type is ‘Modify Original’ \/'

1. Move Activity B, align start of Activity B with end of Activity A o 1y
2. Truncate Activity B
3. Insertion is not feasible

3. If resolution type is ‘Modify Conflicting’
1. Move Activity A, align end of Activity A with start of Activity B
2. Truncate Activity A
3. Insertion is not feasible

4. If resolution type is ‘Modify Both’
1. Move Activity A, align end of Activity A with start of Activity B
2. Move Activity B backward
3. Truncate Activity A and Activity B proportional to durations;
4. Insertion is not feasible.
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Simulation-Based Dynamic Traffic
Assignment Model



Simulation-Based

Dynamic Traffic Assignment Model

Route Choice Model

En-route Switching Model

Traffic Control Model

Mesoscopic Traffic Simulation Model

Weather / Accident Reaction Model
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Simulation-Based
Dynamic Traffic Assignment Model
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Route choice model

= One-Shot Assignment using prevailing travel information

= Averaged experienced travel times in last assignment interval (e.g. 5
minutes, user defined)

= Travel times are output from traffic simulation model

= Current implemented route choice model is pre-trip route choice
model

— Pre-trip route choice model is for pre-trip users who use the travel
time information based on current traffic conditions to find a shortest
path from his/her origin to destination. (e.g. using google map to
compute shortest path considering traffic at that time)

— Shortest path algorithm: link-based A-Star Algorithm that takes care of
delay at turn movement



Traffic Simulation Model

= Newell’s Simplified Kinematic Wave model

— Using cumulative curves

— Capturing queue formation, spillback, and dispersion

— Capturing shock wave

— Adhering to the fundamental diagrams
= Parameters

— Simulation interval length (user defined, e.g. 6 seconds)
= Qutput

— Network flow pattern

e Cumulative vehicles at upstream and downstream of a link
e Vehicle trajectory (enter time and exit time of each link)

— Network performance

e Time-dependent link travel time by turn movement (explicitly capture
turn penalty)



Traffic Information Processing Model

= Prevailing travel time information

— Average link travel times by turn movement using the experienced
travel times in the previous assignment interval
e E.g. for a5 minutes assignment interval and 6 seconds simulation interval,
there are 50 travel times in the previous assignment interval from the

simulation model, hence, we average the traffic times using these 50
travel times for each link by turn movement

= Cumulative vehicles at upstream and downstream of each link

— Can derive all other traffic variables such as inflow and outflow rates,
density, queue length...

— Can estimate any intermediate traffic condition between the
upstream and downstream of the link using the three-detector
method by Newell.



Intelligent Transportation System and
Traffic Management Center Simulation



Project Objectives

= Asimulation model of a large scale area control and
information systems (ITS)

= Model of traffic management center
» Physical infrastructure model (traffic simulation)
" Travel demand model

= Standard hardware/interface protocols for live and
constructive simulations




Traffic Analysis Center
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Signals and Controller :
— Fixed Time 30 0
— Actuated (g { 7
— Adaptive |

Sensors i
— Loop Detectors
— GPS probes
— Video Feeds 2

— Toll Stations

Information Dissemination
— Enroute travel information ‘
— Localized pre trip information IV STALLED WEHICLE '

3 . . . AT HMY 288
Broad pre trip travel information IN ALL LAMES

— Transit
— Road Network
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Human Operator Setup
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Operator Simulator
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Strategies for Prototype

Real time traffic information system (Web, Radio, GPS, VMS)
— Travel Times
— Road construction
— Traffic accidents
— Weather
Real time transit information
— Normal day schedule
— Schedule changes
— Vehicle locations (GPS)
— Delays
Managed traffic signals
Lane management
Adaptive parking pricing
Congestion pricing
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Agent-Based
Intelligent Transportation System Model
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Running Cases

o\\=‘§
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Scenario Configuration

= Scenario configuration
— Semantic-rich for validation of scenario configuration
— Human readable
— Parameterized scenarios: probability distributions

= Parallel execution
— A separate job is generated for each scenario
— Submission to cluster
— Report generation



Scenario Configuration
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Scenario Configuration

= JSON based for human readability and machine readability

= JSON schema adds power of expressing constraints
— Type, range
— Required versus optional
— Dependency (if one parameter appears another must appear)
— Exclusion (two parameters cannot appear at the same time)*
— Functional relationship (one parameter cannot exceed half of another parameter)*
— Enumeration (one parameter can only take value from a set of values)
— File existence, privilege*



Run Time

= |nitial tests were run using the network simulation model to route and simulate 27
million trips in the Chicago metropolitan network over a 24 hour period

= These tests were performed on one node of TRACC’s Zephyr cluster, the system
specification is as follows: two AMD 6273 2.3GHZ CPUs, 64G RAM, CentOS/Linux

6.2

= The wall time for a multi-threaded case is approximately 75 minutes
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Antares Graphical Library

Graphics Library

Visualize in 3D or plotin 2D
WxWidgets

OpenGL
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o g s et
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Interactivity via
identification events
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Network Editor
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POLARIS Framework
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Why Develop a Framework for Building
Transportation Models?

= Pattern of extremely common objects being re-written, simply to provide slightly
different views. Many models differ primarily in level of aggregation.

= Certain areas (namely Intelligent Transportation Systems) have entities which are
rapidly changing and cannot be represented adequately in a black-box model.

=  Groups who want to add features or change behavior tend to write new models
rather than salvage material from existing models due to the difficulty of re-
adpating them, this incurs a re-invention of the wheel.

=  Many performance and modularity-enhancing capabilities in the realm of
advanced computing are being under-utilized.
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Who is the POLARIS User Community?

= Transportation Researchers

— Test and validate theories in an integrated environment quickly and easily
— Refine and expand the transportation ontology model

" |ntegrated Transportation Model Developers
— Weave together disparate model components developed by researchers

— Bring in new technologies and connect with existing models of interest

= Transportation Modelers

— Apply models created by the Integrated Model Developers
— Solve real world problems using POLARIS
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POLARIS Core:
Re-Usable Low Level Capabilities

= Discrete Event Engine
— Enables writing from an agent-based perspective

= Memory Allocation Library
— Optimized for the type of allocation needed in transportation modeling applications

= High Performance Data Structures
— Non-standard structures relevant for use in transportation modeling applications

= Interprocess Engine
— Enables parallel cluster execution
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What Does a Plug and Play Repository Look Like?

A collection of model fragments which communicate their capabilities and
limitations to other developers

Software written with common structural and stylistic elements for easy digestion

Fundamental low-level objects and services which are ubiquitously re-usable

Code designed to be easily adapted and revised

A space for users to develop new models separate from the core repository

Follows a policy of regularly integrating user model fragments into a core
repository which follows a strict versioning scheme

Developing the structure for this repository is more of a general software design
challenge whereas the components developed for it are more of a transportation
software design challenge
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Usage of the POLARIS Modeling Suite
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POLARIS Common Design Patterns

The POLARIS style conventions are generally encapsulated in a series of custom
keywords and macros which simplify the development of POLARIS style compliant
objects

POLARIS Component: Fundamental POLARIS Type

— Connects object to memory allocator, interprocess engine, and discrete event engine

POLARIS Prototype: Extremely Abstract Definition of Type
— For example: vehicle rather than car, bus, truck

POLARIS Implementations: Concrete Definition of Type
— For example: car, bus, truck rather than vehicle

POLARIS Variables: Basic Types with Relevant Semantic Information
— Think “feet in meters” instead of “float”
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One-to-One Translation of a C++ Class to a POLARIS
Component

i float get_length()
L

i return length;
L
| void set_length(float value)
L
i length=value;
P
I void print()
P

| printf( this->length);
e

! private:

. float length;
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Thank You
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