
POLARIS – Motivations and Basics

Joshua Auld, Michael Hope

Hubert Ley, Vadim Sokolov, Bo Xu, Kuilin Zhang
Transportation Research and Analysis Computing Center

Argonne National Laboratory

June 5, 2013

Introduction

2

POLARIS

(Planning and Operations Language for Agent-based Regional Integrated Simulation)

 Mandates from FHWA:

1. Model Traffic Control Centers and other ITS Systems

2. Enhance Interoperability among Existing Tools

 Core Goals and Philosophies of the POLARIS Effort:

– Develop Transportation Modeling Standards and Protocols

– Create an Open Source Model Development Environment

– Seek Out Opinions from and Actively Listen to the Transportation Community

– Connect Sub-Communities with a Common Modeling Framework

– Offer Helpful Tools while Maintaining Flexibility and Modularity

3

What is POLARIS?

 General purpose core libraries which
encourage flexible model development:

– Modular, Extensible, Reusable

– Agent Based

– High Performance

 A repository of useful code and model
fragments built using the core libraries

– Common Transportation Objects

– Open Source

– Extended by Researchers

 Support utilities

 Fully developed applications:

– Network Simulator

– Integrated Activity Based Simulator

4

POLARIS Transportation Systems Modeling Suite

5

Memory
Allocator

Core Libraries

Data
Converters

Network Editor

Scenario
Manager

Utilities

Offline

Common
Design Patterns

Custom Data
Containers

Discrete Event
Engine

Interprocess
Communication

Network
Simulation

Router

Event Manger

Traffic
Manager

ITS

Demand
Simulation

Libraries

Graphics Driver

GUI Toolkit
Geospatial
Database

Input-Output

Antares
Graphics

Population
Synthesizer

Interactive

Network
Simulator

Integrated
ABM Simulator

Integrated
ABM Simulator

Applications

Network
Simulator

Agent Based Modeling

 Agent will encapsulate a set of behaviors that govern their interactions with other
agents and with their environment

 Agent-based methodologies have proven to provide a structure that can be used
to model a vast array of phenomena:

– social processes

– software systems

– manufacturing systems

– urban dynamics

– economics

 In POLARIS, the agent-based paradigm is facilitated through a discrete event
engine which puts developers in the “driver’s seat” of each individual agent

 POLARIS core libraries and many extensions are not specific to transportation,
they can be used for any model which can be simulated as an agent-based system

6

Agent Based Transportation Simulation System

7

Person

Activity
Generation

Activity
Scheduling

Activity
Planning

Route Choice

Traveler
Movements

Activity Planning

Link
Simulation

Intersection
Simulation

Traffic Management
Center

ITS
Infrastructure

Person

Network

ITS Responses

Network
Monitoring

Information
Dissemination

ITS Response
Strategies

Activity-Based Travel Demand Model

8

Activity-Based Travel Demand Model

 Derived from ADAPTS activity-based model:

– Simulation of how activities are planned and scheduled

– Extends concept of “planning horizon” to activity attributes

– Time-of-day, location, mode, party composition

 Fully agent-based travel demand model

– All aspects of demand model are implemented as agent decisions

 Implemented in POLARIS language and adapted to discrete event engine

 Core concept:

– Universal set of activity planning / scheduling processes represented by heuristics
and/or models

– Outcomes constrained by local context

– Activity generation, planning, scheduling, etc. are events which are simulated

9

Activity-Based Travel Demand Model

10

Activity Generation

 Activity generation with joint hazard-duration equations

– Significant socio-economic variables

– Impact of hazard rate from other activities

 Failure probability (generation) calculated each timestep

– Based on time-since-last activity

– Calculated using observed UTRACS and fit to CMAP survey through updating

– h0 = lEgE(lEt)gE-1 + lLgL(lLt)
gL-1 : where gL > 1 and gE < 1

– decreasing early failure (after trip chain), increasing late failure due to need
growth over time

hwev = hazard with exogenous hazard covariates
hnev = without exogenous covariates

Planning Order Model

 Assign plan horizon to each
attribute

– After activity generated

 Plan order model process
– Assigns attribute flexibility

– Get activity plan horizon

– Attribute plan horizons

 Plan horizons for each
attribute based on:

– Attribute flexibilities

– Activity plan horizon

– General activity attributes

– Socio-demographics, etc.

 Defines the meta-attributes
of the activity attributes

Generate New Activity
(Auld and Mohammadian 2009)

Attribute Flexibility Model

Attribute Plan Horizon Model

Demographic
Characteristics

Activity/Travel
History

Flex
Person

Flex
location

Flex
Start

Flex
Duration

Plan
Person

Plan
location

Plan
Start

Plan
Duration

Plan
Mode

Activity Plan Horizon Model

Plan
Activity

Data source

Model

Model result

Flex
Mode

POLARIS Events

MVOP

MVOP

Ordered Logit

Planning Constrained Destination Choice

 Choose destination location from
set of zones

– Limit based on planned activities

– Generates “Available Set”
depending on Activity Plan
Horizons

– Requires plan horizon model to
specify when activities planned

 Use Stratified Importance Sampling
on “Available Set”

Home

Work

Ti
m

e

Location

Shop
Impulsive

(a) Shop planned first

Home

Ti
m

e

Location

(b) Shop planned after Social

Work

Fixed activity

Planned activity

Constraint from Fixed Activity

Constraint from Modifiable Activity

Social
Yesterday

Shop
Impulsive

𝑉𝑖𝑛 = 𝛽𝑇𝑇𝑖𝑛 + 𝛽𝐼𝑙𝑛 𝐼𝑖𝑛 + 𝛽𝑅𝑅𝑖𝑛 + γ ln 𝛽𝑗𝐴𝑖𝑗
𝐽
𝑗 + 𝛽𝑘𝐸𝑖𝑘

𝐾
𝑘 + 𝜃𝑘𝐶𝑘

𝐾
𝑘 + ln

1

𝑝 𝑖

Where,

βT = travel time parameter

Tin = travel time to zone i from home location of decision-maker n

βI = income difference parameter

Iin = absolute value of average zonal income for i minus income for decision-maker n

βR = race difference parameter

Rin = 1-Ri, where Ri is the percentage of residents of zone i of a different race than decision-maker n

γ = logsum parameter for zonal size variables

βj = parameter for the j=1…J, land use variables

Aij = values of the j=1…J, land use area variables for zone i

βk = parameter for the k=1…K, employment sector variables

Eik = values of the k=1…K, employment sector variables for zone i

θk = competition/clustering parameter for employment variable k

Ck = Competition/Agglomeration factor, see Equation 19

p(i) = probability of selecting zone i into the current choice set, from Equation 2

𝐶𝑘 =
1

𝑁𝑧−1
 𝐸𝑙𝑘𝑒

𝛾𝑡 𝑖𝑙𝑁𝑧
𝑙≠𝑖

Where,

Nz = number of zones in region

til = distance between zone i and another zone l

γ = distance decay parameter

Attractiveness Competition Bias Correction Demographics Impedance

Activity Scheduling – Overall System

 Derived from TASHA (ILUTE) scheduling system
– Activities added to schedule as simulation progresses

– Overlaps happen due to planning process or schedule delay

– Incorporates conflict resolution modeling

– Resolution strategy determines which rules to follow

– Resolution strategies and modification rules from observed empirical data

 When a new activity is added:
1. Determines conflict type (shown below)

2. Run conflict resolution model to determine resolution type

3. Modify schedule to fit new activity based on resolution type

4. Insert new activity or drop it (and restore original schedule)

Conflicting Activity

Any Combination of Deleted or Home/Null Activities

Original Activity

Note: New conflict cases exclude all situations with more than 1 activity entirely overlapped.

‘Deleted’ activity refers to a scheduled activity whose resolution has been set to ‘Delete’ by the resolution model.

Case 8: Insert/Overlap Start /End

Case 1: Inserted Original

Case 5: Overlap End & Start

Case 4: Overlap EndCase 2: Overlapped Original

Case 6: Insert & Overlap Start

Case 3: Overlap Start

Case 7: Overlap End & Insert

Conflicting Activity

Any Combination of Deleted or Home/Null Activities

Original Activity

Note: New conflict cases exclude all situations with more than 1 activity entirely overlapped.

‘Deleted’ activity refers to a scheduled activity whose resolution has been set to ‘Delete’ by the resolution model.

Case 8: Insert/Overlap Start /End

Case 1: Inserted Original

Case 5: Overlap End & Start

Case 1: Inserted Original

Case 5: Overlap End & Start

Case 4: Overlap EndCase 4: Overlap EndCase 2: Overlapped Original

Case 6: Insert & Overlap Start

Case 2: Overlapped Original

Case 6: Insert & Overlap Start

Case 3: Overlap Start

Case 7: Overlap End & Insert

Case 3: Overlap Start

Case 7: Overlap End & Insert

Activity Scheduling Rules

 In the scheduling rules, the situation would be handled
as follows:

1. If resolution type is ‘Delete Original’

1. Remove Activity B from schedule, add Activity A

2. If resolution type is ‘Modify Original’

1. Move Activity B, align start of Activity B with end of Activity A

2. Truncate Activity B

3. Insertion is not feasible

3. If resolution type is ‘Modify Conflicting’

1. Move Activity A, align end of Activity A with start of Activity B

2. Truncate Activity A

3. Insertion is not feasible

4. If resolution type is ‘Modify Both’

1. Move Activity A, align end of Activity A with start of Activity B

2. Move Activity B backward

3. Truncate Activity A and Activity B proportional to durations;

4. Insertion is not feasible.

15

Activity A

Scheduling Example:

Activity B

Home/Null

Activity A

Scheduling Example:

Activity B

Home/NullHome/Null

Simulation-Based Dynamic Traffic

Assignment Model

16

Simulation-Based

Dynamic Traffic Assignment Model

 Route Choice Model

 En-route Switching Model

 Traffic Control Model

 Mesoscopic Traffic Simulation Model

 Weather / Accident Reaction Model

17

Simulation-Based

Dynamic Traffic Assignment Model

18

RouterTraveler
Characteristics

Person Agent

Routing Agent

Route Generation Model

Routes

Network Topology

Route Decisions

Person Planner

Activity Plan

Network /
ITS Information Link Simulation Model

Intersection Simulation Model

Intersection Agent

Link Agent

Traffic Control Agent

Traffic Operation and Control Model

Capacities and
Driving Rules

Departure States

Arrival States

ITS Model

Network Performance

Person Mover Traffic Events

En-route switching model

Route choice model

 One-Shot Assignment using prevailing travel information

 Averaged experienced travel times in last assignment interval (e.g. 5
minutes, user defined)

 Travel times are output from traffic simulation model

 Current implemented route choice model is pre-trip route choice
model

– Pre-trip route choice model is for pre-trip users who use the travel
time information based on current traffic conditions to find a shortest
path from his/her origin to destination. (e.g. using google map to
compute shortest path considering traffic at that time)

– Shortest path algorithm: link-based A-Star Algorithm that takes care of
delay at turn movement

Traffic Simulation Model

 Newell’s Simplified Kinematic Wave model

– Using cumulative curves

– Capturing queue formation, spillback, and dispersion

– Capturing shock wave

– Adhering to the fundamental diagrams

 Parameters

– Simulation interval length (user defined, e.g. 6 seconds)

 Output

– Network flow pattern

• Cumulative vehicles at upstream and downstream of a link

• Vehicle trajectory (enter time and exit time of each link)

– Network performance

• Time-dependent link travel time by turn movement (explicitly capture
turn penalty)

Traffic Information Processing Model

 Prevailing travel time information
– Average link travel times by turn movement using the experienced

travel times in the previous assignment interval
• E.g. for a 5 minutes assignment interval and 6 seconds simulation interval,

there are 50 travel times in the previous assignment interval from the
simulation model, hence, we average the traffic times using these 50
travel times for each link by turn movement

 Cumulative vehicles at upstream and downstream of each link
– Can derive all other traffic variables such as inflow and outflow rates,

density, queue length…

– Can estimate any intermediate traffic condition between the
upstream and downstream of the link using the three-detector
method by Newell.

Intelligent Transportation System and

Traffic Management Center Simulation

22

Project Objectives

 A simulation model of a large scale area control and
information systems (ITS)

 Model of traffic management center

 Physical infrastructure model (traffic simulation)

 Travel demand model

 Standard hardware/interface protocols for live and
constructive simulations

Traffic Analysis Center

 Signals and Controller

– Fixed Time

– Actuated

– Adaptive

 Sensors

– Loop Detectors

– GPS probes

– Video Feeds

– Toll Stations

 Information Dissemination

– Enroute travel information

– Localized pre trip information

– Broad pre trip travel information

– Transit

– Road Network

24

Human Operator Setup

25

Traffic
Simulator

Travel
Demand

ITS
Infrastructure

Scenario

USER TMC

Operator Simulator

26

Traffic
Simulator

Travel
Demand

ITS
Infrastructure

Scenario

TMC

Strategies for Prototype

 Real time traffic information system (Web, Radio, GPS, VMS)

– Travel Times

– Road construction

– Traffic accidents

– Weather

 Real time transit information

– Normal day schedule

– Schedule changes

– Vehicle locations (GPS)

– Delays

 Managed traffic signals

 Lane management

 Adaptive parking pricing

 Congestion pricing

27

Agent-Based

Intelligent Transportation System Model

28

Routing Agent

Network Event

Network Topology

ITS Infrastructure

Traffic Simulation Model (Fig. 10)

Sensor Model

Network
Performance

Sensor Readings

System Manager Agent

New Events

Event Manager

Management
Strategy

Route Choice Model (Fig. 9)

Route Decisions

Activity Planner (Fig. 6)

Person Agent

Traffic
Simulation
Agent

TMC Agent

Data source

Model

Model result

Running Cases

29

 Scenario configuration
– Semantic-rich for validation of scenario configuration

– Human readable

– Parameterized scenarios: probability distributions

 Parallel execution
– A separate job is generated for each scenario

– Submission to cluster

– Report generation

Scenario Configuration

Scenario Configuration

31

parameterized scenario
configuration

scenario 1

scenario 2

scenario 3

scenario n

TRACC high-performance
computational cluster

schema

validation
and job

generation

Scenario Configuration

 JSON based for human readability and machine readability

 JSON schema adds power of expressing constraints

– Type, range

– Required versus optional

– Dependency (if one parameter appears another must appear)

– Exclusion (two parameters cannot appear at the same time)*

– Functional relationship (one parameter cannot exceed half of another parameter)*

– Enumeration (one parameter can only take value from a set of values)

– File existence, privilege*

Run Time

 Initial tests were run using the network simulation model to route and simulate 27
million trips in the Chicago metropolitan network over a 24 hour period

 These tests were performed on one node of TRACC’s Zephyr cluster, the system
specification is as follows: two AMD 6273 2.3GHZ CPUs, 64G RAM, CentOS/Linux
6.2

 The wall time for a multi-threaded case is approximately 75 minutes

33

Antares Graphical Library

 Graphics Library

 Visualize in 3D or plot in 2D

 WxWidgets

 OpenGL

 plplot

 Multi-threaded

 Organized Into Developer
Allocated Layers

 Fully Integrated with
Simulation and Core

 Identification capabilities

 Interactivity via
identification events

34

Network Editor

35

 General Purpose Network
Editor

 WxPython

 OpenGL

 Spatialite

 Sqlite Database

 Intersection Editor

 Layer-Based Drawing

 Label Capabilities

 Selection and Identification Capabilities

 Rule-based Editing

POLARIS Framework

36

Why Develop a Framework for Building

Transportation Models?

 Pattern of extremely common objects being re-written, simply to provide slightly
different views. Many models differ primarily in level of aggregation.

 Certain areas (namely Intelligent Transportation Systems) have entities which are
rapidly changing and cannot be represented adequately in a black-box model.

 Groups who want to add features or change behavior tend to write new models
rather than salvage material from existing models due to the difficulty of re-
adpating them, this incurs a re-invention of the wheel.

 Many performance and modularity-enhancing capabilities in the realm of
advanced computing are being under-utilized.

37

Who is the POLARIS User Community?

 Transportation Researchers

– Test and validate theories in an integrated environment quickly and easily

– Refine and expand the transportation ontology model

 Integrated Transportation Model Developers

– Weave together disparate model components developed by researchers

– Bring in new technologies and connect with existing models of interest

 Transportation Modelers

– Apply models created by the Integrated Model Developers

– Solve real world problems using POLARIS

38

POLARIS Core:
Re-Usable Low Level Capabilities

 Discrete Event Engine

– Enables writing from an agent-based perspective

 Memory Allocation Library

– Optimized for the type of allocation needed in transportation modeling applications

 High Performance Data Structures

– Non-standard structures relevant for use in transportation modeling applications

 Interprocess Engine

– Enables parallel cluster execution

39

What Does a Plug and Play Repository Look Like?

 A collection of model fragments which communicate their capabilities and
limitations to other developers

 Software written with common structural and stylistic elements for easy digestion

 Fundamental low-level objects and services which are ubiquitously re-usable

 Code designed to be easily adapted and revised

 A space for users to develop new models separate from the core repository

 Follows a policy of regularly integrating user model fragments into a core
repository which follows a strict versioning scheme

 Developing the structure for this repository is more of a general software design
challenge whereas the components developed for it are more of a transportation
software design challenge

40

Usage of the POLARIS Modeling Suite

41

Memory
Allocator

Core Libraries

Data
Converters

Network Editor

Scenario
Manager

Utilities

Offline

Common
Design Patterns

Custom Data
Containers

Discrete Event
Engine

Interprocess
Communication

Network
Simulation

Router

Event Manger

Traffic
Manager

ITS

Demand
Simulation

Libraries

Graphics Driver

GUI Toolkit
Geospatial
Database

Input-Output

Antares
Graphics

Population
Synthesizer

Interactive

Network
Simulator

Integrated
ABM Simulator

Integrated
ABM Simulator

Applications

Network
Simulator

Plug and play repository

Low-level Capabilities

Memory
Allocator

Core Libraries

Data
Converters

Network Editor

Scenario
Manager

Utilities

Offline

Common
Design Patterns

Custom Data
Containers

Discrete Event
Engine

Interprocess
Communication

Network
Simulation

Router

Event Manger

Traffic
Manager

ITS

Demand
Simulation

Libraries

Graphics Driver

GUI Toolkit
Geospatial
Database

Input-Output

Antares
Graphics

Population
Synthesizer

Interactive

Network
Simulator

Integrated
ABM Simulator

Integrated
ABM Simulator

Applications

Network
Simulator User Libraries

Modified
Functionality

ABM

User Application

New
functionality

. . .

POLARIS Common Design Patterns

 The POLARIS style conventions are generally encapsulated in a series of custom
keywords and macros which simplify the development of POLARIS style compliant
objects

 POLARIS Component: Fundamental POLARIS Type

– Connects object to memory allocator, interprocess engine, and discrete event engine

 POLARIS Prototype: Extremely Abstract Definition of Type

– For example: vehicle rather than car, bus, truck

 POLARIS Implementations: Concrete Definition of Type

– For example: car, bus, truck rather than vehicle

 POLARIS Variables: Basic Types with Relevant Semantic Information

– Think “feet in meters” instead of “float”

42

One-to-One Translation of a C++ Class to a POLARIS

Component

43

Thank You

44

