Modeling Demographics and Emerging Technologies with ABMs

presented to

CATMUG

presented by Jason Lemp

Introduction

- Activity-based models
 - Tours as unit of travel
 - » Disaggregate
 - » Allows for new types of scenario testing
- Case studies
 - » Baltimore Metropolitan Council Activity Model
 - Aging population scenario
 - » Southeast Florida Activity Model
 - CAV scenario
 - TNC scenario

BALTIMORE ACTIVITY MODEL – CHANGING DEMOGRAPHICS

Baltimore ABM Background

Model Structure

Modeling Region

Aging Population Scenario

- How to create the synthetic population?
- Consistency with the base population
 - » Total population constant
 - » Total employment constant
- Adjust distribution of households ->

30% increase in 1 or 2-person households with 1 or more retirees (age 65+)

Synthetic Population Summary

Change in Tours-Making

5.5% decrease in work tours3.6% increase in non-work tours

1.0% decrease in **total** tourmaking

Tours by Mode

	Work Tours		Non-Mandatory Tours		Total Work & Non- Mandatory Tours	
Tour Mode	Base	Aging Population	Base	Aging Population	Base	Aging Population
Drive Alone	1,180,018	1,103,045	773,666	814,967	1,953,684	1,918,012
Shared Ride 2	310,406	291,050	411,185	429,098	721,591	720,148
Shared Ride 3	181,152	171,563	206,778	213,538	387.930	385,101
Transit-Walk	189,233	179,061	139,984	142,205	329,217	321,266
Transit-Auto	192,005	183,106	38,917	40,105	230,922	223,211
Walk	64,007	60,768	207,441	212,544	271,448	273,312
Bike	19,532	18,287	12,218	12,250	31,750	30,537

16,000 Fewer Transit Tours

VMT by Time of Day

	Percentage Change in VMT as Percentage of Base Scenario VMT				
Geographic Area	AM	Midday	PM	Night	Total
Baltimore City	-3%	0%	-2%	-3%	-2%
Anne Arundel County	-4%	0%	-3%	-4%	-3%
Baltimore County	-3%	0%	-3%	-4%	-3%
Carroll County	-5%	0%	-4%	-4%	-3%
Harford County	-5%	-2%	-4%	-6%	-4%
Howard County	-4%	-1%	-4%	-6%	-3%
Baltimore Region	-4%	0%	-3%	-4%	-3%

SOUTHEAST FLORIDA ACTIVITY MODEL –

CAV SCENARIO

SERPM Background

- Regional model for Southeast Florida
- 3 Counties
 - » 2.1M Households, 5.5M Persons

AV Technology – Scenario Development

Driving Alone Available to Unlicensed Individuals

Relax licensed driver age limits

AVs Use Facilities More Efficiently

Adjust highway capacities

Less Onerous In-Vehicle Travel Time

Lower auto IVTT coefficients in choice models

AVs Reduce the Need for Paid Parking

Reduce parking costs and terminal times

AV Considerations NOT Included

Zero-Occupancy Vehicles

 Park at a remote site / serve other family members /join a ride-sourcing fleet

Mix of AV Technologies

Interaction of vehicles with varying technology

AV Technology Results – Trip-Making by Purpose

AV Technology Results – Mode Shares

AV Technology Results -Transit Boardings

AV Technology - Sensitivity Tests

AV Technology Results - VMT

AV Technology Results - Summary

- Increases in trip making not always reasonable
 - » Escorting activities
 - » ABM offers better opportunity to account for this
- VMT changes were reasonable
- Transit
 - » Local bus mode deserves a second look
 - » Potential for micro-transit?
 - » Challenges to lower-frequency service
- Incorporating ZOVs would increase congestion

SOUTHEAST FLORIDA ACTIVITY MODEL –

TNC SCENARIOS

TNC - Scenario Development

- TNC Membership Model
 - » Reflects some travelers do NOT consider TNC as option
 - » Varies across demographics: education, income, age, gender
 - » TNC availability (wait time by area type)
- TNC mode alternatives
 - » Wait time, fare, travel time
 - » Shared service factors
- Repositioning to balance ODs
- Survey data for calibration/assumptions

Baseline TNC Membership

Baseline TNC Mode Share

Baseline TNC Assignment

TNC passenger and repositioning trips

	Total Trips	Average Distance	VMT Ratio
Passenger	187,222	8.81	
Repositioning	52,569	7.93	0.25

VMT Changes over non-TNC Base

County	% Diffe	rence
Palm Beach		0.55%
Broward		0.61%
Miami-Dade		0.57%
All Groups		0.58%

Transit changes over non-TNC Base

Operator	% Diff	ference
Total Transit Boardings		-3.16%
Total Transit Linked Trips		-2.64%
Boardings / Linked Trip		-0.53%

TNC Scenario Development

- Better service
 - » Wait times 1.5-15 min (half)
 - » Half fares
- Worse service
 - » Wait times 6-60 min (double)
 - » Double fares
- Wider adoption remove preferences for NOT using TNC based on:
 - » Gender
 - » Education
 - » Age
 - » Keeping income and wait times

TNC Scenarios – Household TNC Membership

TNC Scenarios - Mode Shares

TNC Scenarios - Trip Mode Shift

TNC Scenario Assignment

TNC Scenarios Summary

- Wait times effective representation of use preferences (but needs better validation)
- ABM allows for segmenting TNC usage
 - » E.g., across demographic segments
- Transit impact small
 - » Drive access/egress transit utility improvement for households with TNC membership
- Next Steps
 - » Testing policies to encourage shared mobility

Conclusions

- ABMs offer new areas for policy analysis
 - » Demographics
 - » Emerging technologies
- Scenario analysis guidelines
 - » Exploratory
 - » NOT predictive
 - » Assumptions should be explicit

